Have a personal or library account? Click to login
On the robustness of the topological derivative for Helmholtz problems and applications Cover

On the robustness of the topological derivative for Helmholtz problems and applications

Open Access
|Aug 2022

References

  1. Allaire, G., Jouve, F. and Toader, A. M. (2004) Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 194(1): 363–393.10.1016/j.jcp.2003.09.032
  2. Amstutz, S. (2006) Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic Analysis, 49(1-2): 87–108.
  3. Amstutz, S. (2022) An introduction to the topological derivative. Engineering Computations, 39(1): 3–33.10.1108/EC-07-2021-0433
  4. Amstutz, S. and Novotny, A. A. (2010) Topological optimization of structures subject to von Mises stress constraints. Structural and Multidisciplinary Optimization, 41(3): 407–420.10.1007/s00158-009-0425-x
  5. Assous, F., Ciarlet, P. and Labrunie, S. (2018) Mathematical Foundations of Computational Electromagnetism. Applied Mathematical Sciences. Springer Nature Switzerland.10.1007/978-3-319-70842-3
  6. Barros, G., Filho, J., Nunes, L. and Xavier, M. (2022) Experimental validation of a topological derivative-based crack growth control method using digital image correlation. Engineering Computations, 39(1): 438–454.10.1108/EC-07-2021-0376
  7. Baumann, Ph. and Sturm, K. (2022) Adjoint-based methods to compute higher-order topological derivatives with an application to elasticity. Engineering Computations, 39(1): 60–114.10.1108/EC-07-2021-0407
  8. Bonnet, M. (2022) On the justification of topological derivative for wave-based qualitative imaging of finite-sized defects in bounded media. Engineering Computations, 39(1): 313–336.10.1108/EC-08-2021-0471
  9. Bonnet, M. and Guzina, B. B. (2004) Sounding of finite solid bodies by way of topological derivative. International Journal for Numerical Methods in Engineering, 61(13): 2344–2373.10.1002/nme.1153
  10. Canelas, A. and Roche, J.R. (2022) Shape and topology optimal design problems in electromagnetic casting. Engineering Computations, 39(1): 147–171.10.1108/EC-05-2021-0300
  11. Delfour, M.C. (2022) Topological derivatives via one-sided derivative of parametrized minima and minimax. Engineering Computations, 39(1): 34–59.10.1108/EC-06-2021-0318
  12. Fernandez, L. and Prakash, R. (2022) Imaging of small penetrable obstacles based on the topological derivative method. Engineering Computations, 39(1): 201–231.10.1108/EC-12-2020-0728
  13. Ferrer, A. and Giusti, S.M. (2022) Inverse homogenization using the topological derivative. Engineering Computations, 39(1): 337–353.10.1108/EC-08-2021-0435
  14. Garreau, S., Guillaume, Ph. and Masmoudi, M. (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM Journal on Control and Optimization, 39(6): 1756–1778.10.1137/S0363012900369538
  15. Guzina, B. B. and Chikichev, I. (2007) From imaging to material identification: a generalized concept of topological sensitivity. Journal of the Mechanics and Physics of Solids, 55(2): 245–279.10.1016/j.jmps.2006.07.009
  16. Henrot, A. and Pierre, M. (2005) Variation et optimisation de formes. Mathématiques et applications, 48, Springer-Verlag, Heidelberg.10.1007/3-540-37689-5
  17. Hintermüller, M. (2005) Fast level set based algorithms using shape and topological sensitivity. Control and Cybernetics, 34(1): 305–324.
  18. Hlaváček, I., Novotny, A. A., Sokołowski, J. and Żochowski, A. (2009) On topological derivatives for elastic solids with uncertain input data. Journal of Optimization Theory and Applications, 141(3): 569–595.10.1007/s10957-008-9490-3
  19. Ilin, A. M. (1992) Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translations of Mathematical Monographs. American Mathematical Society, 102, Providence, RI. Translated from Russian by V. V. Minachin.
  20. Kliewe, Ph., Laurain, A. and Schmidt, K. (2022) Shape optimization in acoustic-structure interaction. Engineering Computations, 39(1): 172–200.10.1108/EC-07-2021-0379
  21. Le Louër, F. and Rapún, M.L. (2022a)Topological sensitivity analysis revisited for timeharmonic wave scattering problems. Part I: The free space case. Engineering Computations, 39(1):232–271.10.1108/EC-06-2021-0327
  22. Le Louër, F. and Rapún, M.L. (2022b) Topological sensitivity analysis revisited for timeharmonic wave scattering problems. Part II: Recursive computations by the boundary integral equation method. Engineering Computations, 39(1):272–312.10.1108/EC-06-2021-0341
  23. Masmoudi, M., Pommier, J. and Samet, B. (2005) The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Problems, 21(2):547–564.10.1088/0266-5611/21/2/008
  24. Novotny, A. A. and Sokołowski, J. (2013) Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-35245-4
  25. Novotny, A. A. and Sokołowski, J. (2020) An Introduction to the Topological Derivative Method. Springer Briefs in Mathematics. Springer Nature Switzerland.10.1007/978-3-030-36915-6
  26. Novotny, A. A., Sokołowski, J. and Żochowski, A. (2019) Applications of the Topological Derivative Method. Studies in Systems, Decision and Control. Springer Nature Switzerland.10.1007/978-3-030-05432-8
  27. Novotny, A.A., Giusti, S.M. and Amstutz, S. (2022) Guest Editorial: On the topological derivative method and its applications in computational engineering. Engineering Computations, 39(1):1–2.
  28. Rakotondrainibe, L., Allaire, G. and Orval, P. (2022) Topological sensitivity analysis with respect to a small idealized bolt. Engineering Computations, 39(1):115–146.10.1108/EC-03-2021-0131
  29. Romero, A. (2022) Optimum design of two-material bending plate compliant devices. Engineering Computations, 39(1):395–420.10.1108/EC-07-2021-0400
  30. Samet, B., Amstutz, S. and Masmoudi, M. (2003) The topological asymptotic for the Helmholtz equation. SIAM Journal on Control and Optimization, 42(5): 1523–1544.10.1137/S0363012902406801
  31. Santos, R.B. and Lopes, C.G. (2022) Topology optimization of structures subject to selfweight loading under stress constraints. Engineering Computations, 39(1): 380–394.10.1108/EC-06-2021-0368
  32. Schumacher, A. (1995) Topologieoptimierung von bauteilstrukturen unter verwendung von lochpositionierungkriterien. Ph.D. Thesis, Universitat-Gesamthochschule-Siegen, Siegen - Germany.
  33. Sokołowski, J. and Żochowski, A. (1999a) On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, 37(4): 1251–1272.10.1137/S0363012997323230
  34. Sokołowski, J. and Żochowski, A. (1999b) Topological derivatives for elliptic problems. Inverse Problems, 15(1): 123–134.10.1088/0266-5611/15/1/016
  35. Sokołowski, J. and Żochowski, A. (2001) Topological derivatives of shape functionals for elasticity systems. Mechanics of Structures and Machines, 29(3): 333–351.10.1007/978-3-0348-8148-7_19
  36. Sokołowski, J. and Zolésio, J. P. (1992) Introduction to Shape Optimization - Shape Sensitivity Analysis. Springer-Verlag, Berlin, Germany.
  37. Xavier, M. and Van Goethem, N. (2022) Brittle fracture on plates governed by topological derivatives. Engineering Computations, 39(1): 421–437.10.1108/EC-07-2021-0375
  38. Yera, R., Forzani, L., Méndez, C.G. and Huespe, A.E. (2022) A topology optimization algorithm based on topological derivative and level-set function for designing phononic crystals. Engineering Computations, 39(1): 354–379.10.1108/EC-06-2021-0352
DOI: https://doi.org/10.2478/candc-2022-0015 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 227 - 248
Submitted on: Mar 1, 2022
|
Accepted on: Jun 1, 2022
|
Published on: Aug 12, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Günter Leugering, Antonio André Novotny, Jan Sokolowski, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.