Have a personal or library account? Click to login
Uniqueness of the Riccati operator of the non-standard ARE of a third order dynamics with boundary control Cover

Uniqueness of the Riccati operator of the non-standard ARE of a third order dynamics with boundary control

Open Access
|Aug 2022

References

  1. Barbu, V., Lasiecka, I. and Triggiani, R. (2006) Tangential Boundary Stabilization of Navier-Stokes Equations. Memoirs AMS 181, 852, 128.10.1090/memo/0852
  2. Bongarti, M., Lasiecka, I. and Rodrigues, J. H. (2022) Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity. Discrete and Continuous Dynamical Systems, Series S, doi: 10.3934/dcdss.2022020
  3. Bongarti, M., Lasiecka, I. and Triggiani, R. (2022) The SMGTJ equation from the boundary: regularity and stabilization. Applicable Analysis, to appear. doi: 10.1080/00036811.2021.1999420
  4. Bucci, F. and Lasiecka, I. (2019) Feedback control of the acoustic pressure in ultrasonic propagation. Optimization, 68, 10, 1811–1854.10.1080/02331934.2018.1504051
  5. Clason, C. and Kaltenbacher, B. (2015) Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evol. Equ. Control Theory 2, 2, 281–300.
  6. Clason, C., Kaltenbacher, B. and Veljović, S. (2009) Boundary Optimal Control of the Westervelt and the Kuznetsov equations. J. Math. Anal. Appl. 356, 738–751.
  7. Christov, C. I. and Jordan, P. M. (2005) Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media. Physical Review Letters 94, 15.10.1103/PhysRevLett.94.15430115904151
  8. Datko, R. (1970) Extending a theorem of Lyapunov to Hilbert spaces. J. Math. Anal. & Appl. 32, 610–616.
  9. Jordan, P. (2004) An analytical study of Kuznetsov’s equation: diffusive solitons, shock formation, and solution bifurcation. Physics Letters A, 326, 77–84.10.1016/j.physleta.2004.03.067
  10. Jordan, P. M. (2014) Second-sound phenomena in inviscid, thermally relaxing gases. Discrete Contin. Dyn. Syst. Ser. B 19 7, 2189–2205.
  11. Jordan, P. M. (2016) The effects of coupling on finite-amplitude acoustic traveling waves in thermoviscous gases: Blackstock’s models. Evol. Equ. Control Theory 5 3, 383–397.10.3934/eect.2016010
  12. Kaltenbacher, B., Lasiecka, I. and Marchand, R. (2011) Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound. Control and Cybernetics 40, 4, 971–988.
  13. Kaltenbacher, B., Lasiecka, I. and Pospieszalska, M. (2012) Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound. Math. Methods in the Applied Sciences, 22.11, 1250035.10.1142/S0218202512500352
  14. Kaltenbacher, B. (2015) Mathematics of nonlinear acoustics. Evol. Equ. Control Theory 4, 447–491.
  15. Lasiecka, I., Lukes, D. and Pandolfi, L. (1995) Input dynamics and nonstandard Riccati equations with applications to boundary control of damped wave and plate equations. J. Optimiz. Theory Appl. 84, 3, 549–574.
  16. Lasiecka, I., Pandolfi, L. and Triggiani, R. (1997) A singular control approach to highly damped second-order abstract equations and applications. Appl. Math. Optim. 36, 67–107.
  17. Lasiecka, I. and Triggiani, R. (2000) Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol I: Abstract Parabolic Systems; Vol II: Abstract Hyperbolic Systems over a Finite Time Horizon. Encyclopedia of Mathematics and Its Applications Series. Cambridge University Press, January 2000.
  18. Lasiecka, I. and Triggiani, R. (2022) Optimal feedback arising in a third order dynamics with boundary controls and infinite horizon. J. Opt. Th. & Appl., DOI 10.1007/s10957–022–02017–y.
  19. Louis, D. and Wexler, D. (1991) The Hilbert space regulator and the operator Riccati equation under stabilizability. Annales de la Societé Scientifique de Bruxelles 105, 157–165.
  20. Moore, F. K. and Gibson, W. E. (1960) Propagation of weak disturbances in a gas subject to relaxation effects. J. Aero/Space Sci., 27, 117–127.
  21. Marchand, R., McDevitt, T. and Triggiani, R. (2012) An abstract semigroup approach to the third-order MGT equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability. Math. Methods in the Applied Sciences, 35: 1896–1929.10.1002/mma.1576
  22. Nikolic, V. and Kaltenbacher, B. (2017) Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy. Appl. Math. Optim. 76, 2, 261–301.
  23. Stokes, G. G. (1851) An examination of the possible effect of the radiation of heat on the propagation of sound. Philosophical Magazine Series, 1(4), 305–317.10.1080/14786445108646736
  24. Straughan, B. (2010) Acoustic waves in Cattaneo-Christov gas. Physics Letters A 374, 2667-2669.10.1016/j.physleta.2010.04.054
  25. Thompson, P. A. (1972) Compressible-Fluid Dynamics. McGraw-Hill, New York.10.1115/1.3422684
  26. Triggiani, R. (1994a) Optimal boundary control and new Riccati equations for highly damped second-order equations. Differential Integral Equations 7, 1109–1144.
  27. Triggiani, R. (1994b) An optimal quadratic boundary control problem for wave and plate-like equations with high internal damping: An abstract approach. Marcel Dekker Lecture Notes Pure Appl. Math. 165, 215–271. International Conference on Optimal Control for Partial Differential Equations, University of Trento, January 1993.10.1201/9781482277654-89
DOI: https://doi.org/10.2478/candc-2022-0013 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 171 - 189
Submitted on: Mar 1, 2022
Accepted on: May 1, 2022
Published on: Aug 12, 2022
Published by: Systems Research Institute Polish Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Irena Lasiecka, Roberto Triggiani, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.