Angelino, E., Johnson, M. J. and Adams, R. P. (2016) Patterns of scalable bayesian inference. Foundations and Trends in Machine Learning, 9: 119–247.10.1561/2200000052
Arabas, P. (2019) Energy aware data centers and networks: a survey. Journal of Telecommunications and Information Technology, 4: 26–36.10.26636/jtit.2018.129818
Arabas, P. (2021) Modeling and simulation of hierarchical task allocation system for energy-aware hpc clouds. Simulation Modelling Practice and Theory, 107: 102–221.10.1016/j.simpat.2020.102221
Cooper, G. F. and Herskovits, E. (1992) A bayesian method for the induction of probabilistic networks from data. Mach. Learn., 9(4): 309–347. ISSN 0885-6125. doi: 10.1023/A:1022649401552.
Corander, J., Ekdahl, M. and Koski, T. (2008) Parallel interacting mcmc for learning of topologies of graphical models. Data Mining and Knowledge Discovery, 17: 431–456.10.1007/s10618-008-0099-9
Corander, P., Gyllenberg, M. and Koski, T. (2006) Bayesian model learning based on a parallel mcmc strategy. Statistics and Computing, 16: 355–362.10.1007/s11222-006-9391-y
Dai, J., Ren, J. and Du, W. (2020) Decomposition-based bayesian network structure learning algorithm using local topology information. Knowledge-Based Systems, 105602.10.1016/j.knosys.2020.105602
Flores, M. J., Nicholson, A. E., Brunskill, A., Korb, K. B. and Mascaro, S. (2011) Incorporating expert knowledge when learning bayesian network structure: A medical case study. Artificial Intelligence in Medicine, 53 (3):181–204. doi: https://doi.org/10.1016/j.artmed.2011.08.004.21958683
Friedman, N. and Koller, D. (2001) Being bayesian about network structure: A bayesian approach to structure discovery in bayesian networks. Mach. Learn., 50. doi: 10.1023/A:1020249912095.
Friedman, N., Nachman, I. and Pe’er, D. (1999) Learning bayesian network structure from massive datasets: The sparse candidate algorithm. In: Proceedings of the Fifteenth Conference on Uncertainty and Artificial Intelligence. Morgan Kaufmann Publishers, 206–215. doi: 10.13140/2.1.1125.2169.
Gao, F. and Huang, D. (2020) A node sorting method for k2 algorithm in bayesian network structure learning. In: 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 106–110. doi: 10.1109/ICAICA50127.2020.9182465.
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., Tenenbaum, J. B. and Goodman, N. D. (2010) Probabilistic models of cognition: exploring representation and inductive biases. Trends in Cognitive Sciences, 14: 357–364.10.1016/j.tics.2010.05.00420576465
Hansen, N., Auger, A., Mersmann, O., Tusar, T. and Brockhoff, D. (2016) Coco: A platform for comparing continuous optimizers in a blackbox setting. Optimization Methods and Software, 36: 114–144.10.1080/10556788.2020.1808977
Jones, M. and Love, B. C. (2011) Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of bayesian models of cognition. Behavioral and Brain Sciences, 34:169–231.10.1017/S0140525X1000313421864419
Kemp, C., Tenenbaum, J. B., Niyogi, S. and Griffiths, T. (2010) A probabilistic model of theory formation. Cognition, 114: 165–196.10.1016/j.cognition.2009.09.00319892328
Koller, D., Friedman, N., Getoor, L. and Taskar, B. (2007) Graphical models in a nutshell. In: L. Getoor and B. Taskar, eds., Introduction to Statistical Relational Learning. The MIT Press, 13–55.
Lee, C. and van Beek, P. (2017)Metaheuristics for score-and-search bayesian network structure learning. In: Canadian Conference on Artificial Intelligence, 129–141. Springer.10.1007/978-3-319-57351-9_17
Madigan, D., Andersson, S., Perlman, M. and Volinsky, C. (2000) Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Communications in Statistics: Theory and Methods, 25. doi: 10.1080/03610929608831853.
Madsen, A. L., Jensen, F., Salmerón, A., Langseth, H. and Nielsen, T. D. (2017) A parallel algorithm for bayesian network structure learning from large data sets. Knowledge-Based Systems, 117: 46–55.10.1016/j.knosys.2016.07.031
Mansinghka, V., Kemp, C., Tenenbaum, J. B. and Griffiths, T. L. (2006) Structured priors for structure learning. In: Proceedings of the 22nd conference on uncertainty in artificial intelligence (UAI). AUAI Press, 324–331.
McClelland, J., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S. and Smit, L. B. (2010) Letting structure emerge: connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14: 348–356.10.1016/j.tics.2010.06.002305644620598626
Moore, A. and Wong, W.-k. (2004) Optimal reinsertion: A new search operator for accelerated and more accurate bayesian network structure learning. In: Proceedings of the Twentieth International Conference on Machine Learning (ICML’03). AAAI Press, 552–559.
Murphy, G. and Medin, D. (1985) The role of theories in conceptual coherence. Psychological Review, 92(3): 289–316. ISSN 0033-295X. doi: 10.1037/0033-295X.92.3.289.
Peters, G. (2008) Markov chain Monte Carlo: stochastic simulation for bayesian inference. Statistics in Medicine, 27(16): 3213–3214. doi: 10.1002/sim.3240.
Ravenzwaaij, D., Cassey, P. and Brown, S. D. (2018) A simple introduction to Markov chain Monte-Carlo. Psychonomic Bulletin & Review, 25: 143–154.10.3758/s13423-016-1015-8
Robinson, R. (1973) Counting labeled acyclic digraphs. In: F. Harary, ed., New Directions in the Theory of Graphs, 239–273. Academic Press, New York, NY.
Scanagatta, M., Salmeron, A. and Stella, F. (2019) A survey on bayesian network structure learning from data. Progress in Artificial Intelligence, 8: 425–439.10.1007/s13748-019-00194-y
Silander, T., Leppä-Aho, J., Jääsaari, E. and Roos, T. (2018) Quotient normalized maximum likelihood criterion for learning bayesian network structures. In: International Conference on Artificial Intelligence and Statistics, 948–957. [Publisher ????]
Szynkiewicz, P. (2018) Comparative study of pso and cma-es algorithms on black-box optimization benchmarks. Journal of Telecommunications and Information Technology, 4: 5–17.10.26636/jtit.2018.127418
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. and Goodman, N. D. (2011) Statistics, structure, and abstraction. Science, 331: 1279–1285.10.1126/science.119278821393536
v. d. Vaart, A. W. (1998) Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press. doi: 10.1017/CBO9780511802256.
Wellman, H. M. and Gelman, S. A. (1992) Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43(1):3 3 7–375. doi: 10.1146/annurev.ps.43.020192.002005. PMID: 1539946.1539946