References
- Rajpurkar, P., A. Y. Hannun, M. Haghpanahi, C. Bourn, A. Y. Ng. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. – Nature Medicine, Vol. 25, 2019, No 1, pp. 65-69.
- Savalia, S., V. Emamian. Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks. – Bioengineering, Vol. 5, 2018, No 2, 35.
- Tesfai, H., H. Saleh, M. Al-Qutayri, M. B. Mohammad, T. Tekeste, A. Khandoker, B. Mohammad. Lightweight Shufflenet-Based CNN for Arrhythmia Classification. – IEEE Access, Vol. 10, 2022, pp. 111842-111854.
- Zhao, Y., J. Ren, B. Zhang, J. Wu, Y. Lyu. An Explainable Attention-Based TCN Heartbeats Classification Model for Arrhythmia Detection. – Biomedical Signal Processing and Control, Vol. 80, 2023, 104337.
- Singh, S., S. K. Pandey, U. Pawar, R. R. Janghel. Classification of ECG Arrhythmia Using Recurrent Neural Networks. – Procedia Computer Science, Vol. 132, 2018, pp. 1290-1297.
- Boda, S., M. Mahadevappa, P. K. Dutta. An Automated Patient-Specific ECG Beat Classification Using LSTM-Based Recurrent Neural Networks. – Biomedical Signal Processing and Control, Vol. 84, 2023, 104756.
- Kıymaç, E., Y. Kaya. A Novel Automated CNN Arrhythmia Classifier with Memory-Enhanced Artificial Hummingbird Algorithm. – Expert Systems with Applications, Vol. 213, 2023, 119162.
- Lea, C., R. Vidal, A. Reiter, G. D. Hager. Temporal Convolutional Networks: A Unified Approach to Action Segmentation. – In: B. Leibe, J. Matas, N. Sebe, M. Welling, Eds. Computer Vision – ECCV 2016 Workshops, Proceedings, Part III, Springer, 2016, pp. 47-54.
- Hochreiter, S., J. Schmidhuber. Long Short-Term Memory. – Neural Computation, Vol. 9, 1997, No 8, pp. 1735-1780.
- Xiao, Q., K. Lee, S. A. Mokhtar, I. Ismail, A. L. B. M. Pauzi, Q. Zhang, P. Y. Lim. Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review. – Applied Sciences, Vol. 13, 2023, No 8, 4964.
- Ansari, Y., O. Mourad, K. Qaraqe, E. Serpedin. Deep Learning for ECG Arrhythmia Detection and Classification: An Overview of Progress for the Period 2017-2023. – Frontiers in Physiology, Vol. 14, 2023, 1246746.
- Barot, R., H. Kapadia. Air Quality Prediction Using Long Short-Term Memory with Attention Mechanism. – Cybernetics and Information Technologies, Vol. 22, 2022, No 1, pp. 125-139.
- Alazzam, M., A. A. Alaboudi, A. A. Abubakar. Deep Learning Framework for IoT Network Forensics with Feature Selection and Temporal Modeling. – Cybernetics and Information Technologies, Vol. 22, 2022, No 3, pp. 94-108.
- Karimunnisa, S., K. R. Ramya, P. V. Krishna. Deep Learning-Driven Workload Prediction and Optimization for Load Balancing in a Cloud Computing Environment. – Cybernetics and Information Technologies, Vol. 24, 2024, No 3, pp. 17-28.
- ANSI/AAMI EC57:2012/(R)2020. Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms. Association for the Advancement of Medical Instrumentation, 2013.
- Goldberger, A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. – Circulation, Vol. 101, 2000, No 23, pp. e215-e220.
- Almasoud, A. S., H. A. Mengash, M. M. Eltahir, A. Alabdulkarin, A. M. Mahmoud, O. I. Khalaf. Arrhythmia Classification Using the Farmland Fertility Algorithm and Hybrid Deep Learning. – Sensors, Vol. 23, 2023, 8265.
- Begum, S. G., E. Priyadarshi, S. Pratap, A. Kumar, A. Alshuhail. Automated Detection of Abnormalities in ECG Signals. – Biomedical Engineering Advances, Vol. 5, 2023, 100066.
- Sun, A., W. Hong, J. Li, J. Mao. An Arrhythmia Classification Model Based on the CNN-LSTM-SE Algorithm. – Sensors, Vol. 24, 2024, 6306.
- Islam, M. R., M. Qaraqe, K. Qaraqe, S. A. Al-Maadeed, E. Serpedin. CAT-Net: Convolution, Attention, and Transformer-Based Network for ECG Arrhythmia Classification. – Biomedical Signal Processing and Control, Vol. 93, 2024, 106211.
- Moody, G. B., I. Jekova, A. L. Goldberger. St. Petersburg INCART 12-lead Arrhythmia Database. – PhysioNet, 2008 (online). https://physionet.org/content/incartdb/1.0.0/
- Prakash, A. J., M. Atef. A Lightweight Deep Learning Approach for Patient-Specific Electrocardiogram Beat Classification Using Local and Long-Term Dependencies. – Engineering Applications of Artificial Intelligence, Vol. 152, 2025, 110754.
- Omarov, B., Z. Momynkulov. Hybrid Deep Learning Model for Heart Disease Detection on 12-Lead Electrocardiograms. – In: Procedia Computer Science. Elsevier B. V., 2024, pp. 439-444.
- Qi, M., H. Shao, N. Shi, G. Wang, Y. Lv. Arrhythmia Classification Detection Based on Multiple Electrocardiogram Databases. – PLoS One, Vol. 18, 2023, e0290995.
- Liu, L.-R., M.-Y. Huang, S.-T. Huang, L.-C. Kung, C.-H. Lee, W.-T. Yao, M.-F. Tsai, C.-H. Yang, C.-H. Luo, Y.-Y. Lin. An Arrhythmia Classification Approach via Deep Learning Using Single-Lead ECG without QRS Wave Detection. – Heliyon, Vol. 10, 2024, e26874.
- Krasteva, V., T. Stoyanov, R. Schmid, I. Jekova. Delineation of 12-Lead ECG Representative Beats Using Convolutional Encoder-Decoders with Residual and Recurrent Connections. – Sensors, Vol. 24, 2024, No 14, 4645.
- Yang, X., Z. Song, I. King, Z. Xu. A Survey on Deep Semi-Supervised Learning. – IEEE Transactions on Knowledge and Data Engineering, Vol. 35, 2022, No 9, pp. 8934-8954.
- Rasmussen, S. M., M. E. K. Jensen, C. S. Meyhoff, E. K. Aasvang, H. B. D. Sørensen. Semi-Supervised Analysis of the Electrocardiogram Using Deep Generative Models. – In: Proc. of 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’21), IEEE, 2021, pp. 1124-1127.
- Shi, J., W. Liu, H. Zhang, S. Chang, H. Wang, J. He, Q. Huang. CPSS: Fusing Consistency Regularization and Pseudo-Labeling Techniques for Semi-Supervised Deep Cardiovascular Disease Detection Using All Unlabeled Electrocardiograms. – Computer Methods and Programs in Biomedicine, Vol. 254, 2024, 108315.
- Ying, Z., G. Zhang, Z. Pan, C. Chu, X. Liu. FedECG: A Federated Semi-Supervised Learning Framework for Electrocardiogram Abnormalities Prediction. – Journal of King Saud University – Computer and Information Sciences, Vol. 35, 2023, No 6, 101568.
- Zhai, X., Z. Zhou, C. Tin. Semi-Supervised Learning for ECG Classification Without Patient-Specific Labeled Data. – Expert Systems with Applications, Vol. 158, 2020, 113411.
- Shi, J., Z. Li, W. Liu, H. Zhang, D. Luo, Y. Ge, S. Chang, H. Wang, J. He, Q. Huang. An Adaptive Threshold-Based Semi-Supervised Learning Method for Cardiovascular Disease Detection. – Information Sciences, Vol. 677, 2024, 120881.
- Ingolfsson, T. M., X. Wang. ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal Convolutional Network. – arXiv Preprint, arXiv:2103.13740, 2021.
- Lin, C.-H. Frequency-Domain Features for ECG Beat Discrimination Using Grey Relational Analysis-Based Classifier. – Computers & Mathematics with Applications, Vol. 55, 2008, No 4, pp. 680-690.
- Singh, A. K., S. Krishnan. ECG Signal Feature Extraction Trends in Methods and Applications. – BioMedical Engineering OnLine, Vol. 22, 2023, 22.
- Krasteva, V., I. Jekova, T. Stoyanov, R. Schmid. In Search of an Optimal FIR Filter for ECG Delineation. – In: Computing in Cardiology, Vol. 51, 2024.
- Chawla, N. V., K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer. SMOTE: Synthetic Minority Over-Sampling Technique. – Journal of Artificial Intelligence Research, Vol. 16, 2002, pp. 321-357.
- Bi, J., Y. Zhang, H. Yuan, J. Xue, J. Shi, Y. Zhou, J. Xu, Y. Song, L. Xing, Y. Pang. Accurate Arrhythmia Classification with Multi-Branch Multi-Head Attention Temporal Convolutional Networks. – Frontiers in Physiology, Vol. 14, 2023, 1167916.
- Shan, L., Y. Li, H. Jiang, P. Zhou, J. Niu, R. Liu, Y. Wei, B. Liu, J. Qiao, Y. Lv, L. Wang, Y. Li, B. Liu. Abnormal ECG Detection Based on an Adversarial Autoencoder. – Frontiers in Physiology, Vol. 13, 2022, 961724.
- Albarrak, A. M., R. Alharbi, I. A. Ibrahim. Detection and Classification of Unhealthy Heartbeats Using Deep Learning Techniques. – Sensors (Basel), Vol. 25, 26 September 2025, No 19, 5976. DOI: 10.3390/s25195976. PMID: 41094799. PMCID: PMC12527069.
- Alamatsaz, N., L. Tabatabaei, M. Yazdchi, H. Payan, N. Alamatsaz, F. Nasimi. A Lightweight Hybrid CNN-LSTM Explainable Model for ECG-Based Arrhythmia Detection. – Biomedical Signal Processing and Control, Vol. 90, 2024, 105884.
- Lee, D.-H. Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. – In: Workshop on Challenges in Representation Learning, ICML, Vol. 3, 2013, 896.
- Oliveira, L. C., Z. Lai, H. M. Siefkes, C.-N. Chuah. Generalizable Semi-Supervised Learning Strategies for Multiple Learning Tasks Using 1-d Biomedical Signals. – In: NeurIPS 2022 Workshop on Learning from Time Series for Health, 2022.
- Zhang, B., Y. Wang, W. Hou, H. Wu, J. Wang, M. Okumura, T. Shinozaki. Flexmatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. – In: Advances in Neural Information Processing Systems, Vol. 34, 2021, pp. 18408-18419.
- Grandvalet, Y., Y. Bengio. Semi-Supervised Learning by Entropy Minimization. – In: Advances in Neural Information Processing Systems, Vol. 17, 2004.
- Guo, L.-Z., Y.-F. Li. Class-Imbalanced Semi-Supervised Learning with Adaptive Thresholding. – In: Proc. of International Conference on Machine Learning (PMLR’22), 2022, pp. 8082-8094.
- Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra. Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization. – In: Proc. of IEEE International Conference on Computer Vision, 2017, pp. 618-626.
- Suh, J., J. Kim, S. Kwon, E. Jung, H.-J. Ahn, K.-Y. Lee, E.-K. Choi, W. Rhee. Visual Interpretation of Deep Learning Model in ECG Classification: A Comprehensive Evaluation of Feature Attribution Methods. – In: Computers in Biology and Medicine, Vol. 182, 2024, 109088.
- Malmivuo, J., R. Plonsey. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. New York, Oxford University Press, 1995.
- Jiang, M., J. Gu, Y. Li, B. Wei, J. Zhang, Z. Wang, L. Xia. HADLN: Hybrid Attention-Based Deep Learning Network for Automated Arrhythmia Classification. – Frontiers in Physiology, Vol. 12, 2021, 683025.
- Talukder, M. A. A Hybrid Multiscale Feature Fusion Model for Enhanced Cardiovascular Arrhythmia Detection. – Results in Engineering, 2025, 104244.
- Madan, P., V. Singh, D. P. Singh, M. Diwakar, B. Pant, A. Kishor. A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification. – Bioengineering, Vol. 9, 2022, No 4, 152.
- Bhatia, S., S. K. Pandey, A. Kumar, A. Alshuhail. Classification of Electrocardiogram Signals Based on Hybrid Deep Learning Models. – Sustainability, Vol. 14, 2022, No 24, 16572.
