Have a personal or library account? Click to login
A Semi-Supervised TCN-LSTM Model for Single Lead ECG Heartbeat Classification Cover

A Semi-Supervised TCN-LSTM Model for Single Lead ECG Heartbeat Classification

Open Access
|Dec 2025

References

  1. Rajpurkar, P., A. Y. Hannun, M. Haghpanahi, C. Bourn, A. Y. Ng. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. – Nature Medicine, Vol. 25, 2019, No 1, pp. 65-69.
  2. Savalia, S., V. Emamian. Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks. – Bioengineering, Vol. 5, 2018, No 2, 35.
  3. Tesfai, H., H. Saleh, M. Al-Qutayri, M. B. Mohammad, T. Tekeste, A. Khandoker, B. Mohammad. Lightweight Shufflenet-Based CNN for Arrhythmia Classification. – IEEE Access, Vol. 10, 2022, pp. 111842-111854.
  4. Zhao, Y., J. Ren, B. Zhang, J. Wu, Y. Lyu. An Explainable Attention-Based TCN Heartbeats Classification Model for Arrhythmia Detection. – Biomedical Signal Processing and Control, Vol. 80, 2023, 104337.
  5. Singh, S., S. K. Pandey, U. Pawar, R. R. Janghel. Classification of ECG Arrhythmia Using Recurrent Neural Networks. – Procedia Computer Science, Vol. 132, 2018, pp. 1290-1297.
  6. Boda, S., M. Mahadevappa, P. K. Dutta. An Automated Patient-Specific ECG Beat Classification Using LSTM-Based Recurrent Neural Networks. – Biomedical Signal Processing and Control, Vol. 84, 2023, 104756.
  7. Kıymaç, E., Y. Kaya. A Novel Automated CNN Arrhythmia Classifier with Memory-Enhanced Artificial Hummingbird Algorithm. – Expert Systems with Applications, Vol. 213, 2023, 119162.
  8. Lea, C., R. Vidal, A. Reiter, G. D. Hager. Temporal Convolutional Networks: A Unified Approach to Action Segmentation. – In: B. Leibe, J. Matas, N. Sebe, M. Welling, Eds. Computer Vision – ECCV 2016 Workshops, Proceedings, Part III, Springer, 2016, pp. 47-54.
  9. Hochreiter, S., J. Schmidhuber. Long Short-Term Memory. – Neural Computation, Vol. 9, 1997, No 8, pp. 1735-1780.
  10. Xiao, Q., K. Lee, S. A. Mokhtar, I. Ismail, A. L. B. M. Pauzi, Q. Zhang, P. Y. Lim. Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review. – Applied Sciences, Vol. 13, 2023, No 8, 4964.
  11. Ansari, Y., O. Mourad, K. Qaraqe, E. Serpedin. Deep Learning for ECG Arrhythmia Detection and Classification: An Overview of Progress for the Period 2017-2023. – Frontiers in Physiology, Vol. 14, 2023, 1246746.
  12. Barot, R., H. Kapadia. Air Quality Prediction Using Long Short-Term Memory with Attention Mechanism. – Cybernetics and Information Technologies, Vol. 22, 2022, No 1, pp. 125-139.
  13. Alazzam, M., A. A. Alaboudi, A. A. Abubakar. Deep Learning Framework for IoT Network Forensics with Feature Selection and Temporal Modeling. – Cybernetics and Information Technologies, Vol. 22, 2022, No 3, pp. 94-108.
  14. Karimunnisa, S., K. R. Ramya, P. V. Krishna. Deep Learning-Driven Workload Prediction and Optimization for Load Balancing in a Cloud Computing Environment. – Cybernetics and Information Technologies, Vol. 24, 2024, No 3, pp. 17-28.
  15. ANSI/AAMI EC57:2012/(R)2020. Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms. Association for the Advancement of Medical Instrumentation, 2013.
  16. Goldberger, A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, Vol. 101, 2000, No 23, pp. e215-e220.
  17. Almasoud, A. S., H. A. Mengash, M. M. Eltahir, A. Alabdulkarin, A. M. Mahmoud, O. I. Khalaf. Arrhythmia Classification Using the Farmland Fertility Algorithm and Hybrid Deep Learning. – Sensors, Vol. 23, 2023, 8265.
  18. Begum, S. G., E. Priyadarshi, S. Pratap, A. Kumar, A. Alshuhail. Automated Detection of Abnormalities in ECG Signals. – Biomedical Engineering Advances, Vol. 5, 2023, 100066.
  19. Sun, A., W. Hong, J. Li, J. Mao. An Arrhythmia Classification Model Based on the CNN-LSTM-SE Algorithm. – Sensors, Vol. 24, 2024, 6306.
  20. Islam, M. R., M. Qaraqe, K. Qaraqe, S. A. Al-Maadeed, E. Serpedin. CAT-Net: Convolution, Attention, and Transformer-Based Network for ECG Arrhythmia Classification. – Biomedical Signal Processing and Control, Vol. 93, 2024, 106211.
  21. Moody, G. B., I. Jekova, A. L. Goldberger. St. Petersburg INCART 12-lead Arrhythmia Database. – PhysioNet, 2008 (online). https://physionet.org/content/incartdb/1.0.0/
  22. Prakash, A. J., M. Atef. A Lightweight Deep Learning Approach for Patient-Specific Electrocardiogram Beat Classification Using Local and Long-Term Dependencies. – Engineering Applications of Artificial Intelligence, Vol. 152, 2025, 110754.
  23. Omarov, B., Z. Momynkulov. Hybrid Deep Learning Model for Heart Disease Detection on 12-Lead Electrocardiograms. – In: Procedia Computer Science. Elsevier B. V., 2024, pp. 439-444.
  24. Qi, M., H. Shao, N. Shi, G. Wang, Y. Lv. Arrhythmia Classification Detection Based on Multiple Electrocardiogram Databases. – PLoS One, Vol. 18, 2023, e0290995.
  25. Liu, L.-R., M.-Y. Huang, S.-T. Huang, L.-C. Kung, C.-H. Lee, W.-T. Yao, M.-F. Tsai, C.-H. Yang, C.-H. Luo, Y.-Y. Lin. An Arrhythmia Classification Approach via Deep Learning Using Single-Lead ECG without QRS Wave Detection. – Heliyon, Vol. 10, 2024, e26874.
  26. Krasteva, V., T. Stoyanov, R. Schmid, I. Jekova. Delineation of 12-Lead ECG Representative Beats Using Convolutional Encoder-Decoders with Residual and Recurrent Connections. – Sensors, Vol. 24, 2024, No 14, 4645.
  27. Yang, X., Z. Song, I. King, Z. Xu. A Survey on Deep Semi-Supervised Learning. – IEEE Transactions on Knowledge and Data Engineering, Vol. 35, 2022, No 9, pp. 8934-8954.
  28. Rasmussen, S. M., M. E. K. Jensen, C. S. Meyhoff, E. K. Aasvang, H. B. D. Sørensen. Semi-Supervised Analysis of the Electrocardiogram Using Deep Generative Models. – In: Proc. of 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’21), IEEE, 2021, pp. 1124-1127.
  29. Shi, J., W. Liu, H. Zhang, S. Chang, H. Wang, J. He, Q. Huang. CPSS: Fusing Consistency Regularization and Pseudo-Labeling Techniques for Semi-Supervised Deep Cardiovascular Disease Detection Using All Unlabeled Electrocardiograms. – Computer Methods and Programs in Biomedicine, Vol. 254, 2024, 108315.
  30. Ying, Z., G. Zhang, Z. Pan, C. Chu, X. Liu. FedECG: A Federated Semi-Supervised Learning Framework for Electrocardiogram Abnormalities Prediction. – Journal of King Saud University – Computer and Information Sciences, Vol. 35, 2023, No 6, 101568.
  31. Zhai, X., Z. Zhou, C. Tin. Semi-Supervised Learning for ECG Classification Without Patient-Specific Labeled Data. – Expert Systems with Applications, Vol. 158, 2020, 113411.
  32. Shi, J., Z. Li, W. Liu, H. Zhang, D. Luo, Y. Ge, S. Chang, H. Wang, J. He, Q. Huang. An Adaptive Threshold-Based Semi-Supervised Learning Method for Cardiovascular Disease Detection. – Information Sciences, Vol. 677, 2024, 120881.
  33. Ingolfsson, T. M., X. Wang. ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal Convolutional Network. – arXiv Preprint, arXiv:2103.13740, 2021.
  34. Lin, C.-H. Frequency-Domain Features for ECG Beat Discrimination Using Grey Relational Analysis-Based Classifier. – Computers & Mathematics with Applications, Vol. 55, 2008, No 4, pp. 680-690.
  35. Singh, A. K., S. Krishnan. ECG Signal Feature Extraction Trends in Methods and Applications. – BioMedical Engineering OnLine, Vol. 22, 2023, 22.
  36. Krasteva, V., I. Jekova, T. Stoyanov, R. Schmid. In Search of an Optimal FIR Filter for ECG Delineation. – In: Computing in Cardiology, Vol. 51, 2024.
  37. Chawla, N. V., K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer. SMOTE: Synthetic Minority Over-Sampling Technique. – Journal of Artificial Intelligence Research, Vol. 16, 2002, pp. 321-357.
  38. Bi, J., Y. Zhang, H. Yuan, J. Xue, J. Shi, Y. Zhou, J. Xu, Y. Song, L. Xing, Y. Pang. Accurate Arrhythmia Classification with Multi-Branch Multi-Head Attention Temporal Convolutional Networks. – Frontiers in Physiology, Vol. 14, 2023, 1167916.
  39. Shan, L., Y. Li, H. Jiang, P. Zhou, J. Niu, R. Liu, Y. Wei, B. Liu, J. Qiao, Y. Lv, L. Wang, Y. Li, B. Liu. Abnormal ECG Detection Based on an Adversarial Autoencoder. – Frontiers in Physiology, Vol. 13, 2022, 961724.
  40. Albarrak, A. M., R. Alharbi, I. A. Ibrahim. Detection and Classification of Unhealthy Heartbeats Using Deep Learning Techniques. – Sensors (Basel), Vol. 25, 26 September 2025, No 19, 5976. DOI: 10.3390/s25195976. PMID: 41094799. PMCID: PMC12527069.
  41. Alamatsaz, N., L. Tabatabaei, M. Yazdchi, H. Payan, N. Alamatsaz, F. Nasimi. A Lightweight Hybrid CNN-LSTM Explainable Model for ECG-Based Arrhythmia Detection. – Biomedical Signal Processing and Control, Vol. 90, 2024, 105884.
  42. Lee, D.-H. Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. – In: Workshop on Challenges in Representation Learning, ICML, Vol. 3, 2013, 896.
  43. Oliveira, L. C., Z. Lai, H. M. Siefkes, C.-N. Chuah. Generalizable Semi-Supervised Learning Strategies for Multiple Learning Tasks Using 1-d Biomedical Signals. – In: NeurIPS 2022 Workshop on Learning from Time Series for Health, 2022.
  44. Zhang, B., Y. Wang, W. Hou, H. Wu, J. Wang, M. Okumura, T. Shinozaki. Flexmatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. – In: Advances in Neural Information Processing Systems, Vol. 34, 2021, pp. 18408-18419.
  45. Grandvalet, Y., Y. Bengio. Semi-Supervised Learning by Entropy Minimization. – In: Advances in Neural Information Processing Systems, Vol. 17, 2004.
  46. Guo, L.-Z., Y.-F. Li. Class-Imbalanced Semi-Supervised Learning with Adaptive Thresholding. – In: Proc. of International Conference on Machine Learning (PMLR’22), 2022, pp. 8082-8094.
  47. Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra. Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization. – In: Proc. of IEEE International Conference on Computer Vision, 2017, pp. 618-626.
  48. Suh, J., J. Kim, S. Kwon, E. Jung, H.-J. Ahn, K.-Y. Lee, E.-K. Choi, W. Rhee. Visual Interpretation of Deep Learning Model in ECG Classification: A Comprehensive Evaluation of Feature Attribution Methods. – In: Computers in Biology and Medicine, Vol. 182, 2024, 109088.
  49. Malmivuo, J., R. Plonsey. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. New York, Oxford University Press, 1995.
  50. Jiang, M., J. Gu, Y. Li, B. Wei, J. Zhang, Z. Wang, L. Xia. HADLN: Hybrid Attention-Based Deep Learning Network for Automated Arrhythmia Classification. – Frontiers in Physiology, Vol. 12, 2021, 683025.
  51. Talukder, M. A. A Hybrid Multiscale Feature Fusion Model for Enhanced Cardiovascular Arrhythmia Detection. – Results in Engineering, 2025, 104244.
  52. Madan, P., V. Singh, D. P. Singh, M. Diwakar, B. Pant, A. Kishor. A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification. – Bioengineering, Vol. 9, 2022, No 4, 152.
  53. Bhatia, S., S. K. Pandey, A. Kumar, A. Alshuhail. Classification of Electrocardiogram Signals Based on Hybrid Deep Learning Models. – Sustainability, Vol. 14, 2022, No 24, 16572.
DOI: https://doi.org/10.2478/cait-2025-0042 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 229 - 248
Submitted on: Sep 21, 2025
Accepted on: Nov 17, 2025
Published on: Dec 11, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Nitya N. Kulkarni, G. S. Nagaraja, B. G. Sudarshan, M. Krishna, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.