Have a personal or library account? Click to login
NeuroFusionNet: A Multi-Modal Graph Transformer with Contrastive Alignment and Evidential Uncertainty for Epileptic Seizure Detection Cover

NeuroFusionNet: A Multi-Modal Graph Transformer with Contrastive Alignment and Evidential Uncertainty for Epileptic Seizure Detection

Open Access
|Dec 2025

References

  1. Rehab, N., Y. Siwar, Z. Mourad. Machine Learning for Epilepsy: A Comprehensive Exploration of Novel EEG and MRI Techniques for Seizure Diagnosis. – Journal of Medical and Biological Engineering, Vol. 44, 2024, pp. 317-336.
  2. Lin, P. T., J. H. Sie, H. J. Lee, C. C. Chou, Y. C. Shih, C. Chen, F. H. Lin, W. J. Kuo, H. M. Khoo, H. Y. Yu. Detection of Epileptogenic Zones in People with Epilepsy Using Optimized EEG-fMRI. – Epilepsy & Behavior, Vol. 164, 2025, 110257.
  3. Aravind Britto, K. R., A. B., S. Srinivasan, S. K. Mathivanan, M. Venkatesan, B. A. Malar, S. Mallik, H. Qin. A Multi-Dimensional Hybrid CNN-BiLSTM Framework for Epileptic Seizure Detection Using Electroencephalogram Signal Scrutiny. – Systems and Soft Computing, Vol. 5, 2023, 200062.
  4. Nandakumar, N., D. Hsu, R. Ahmed, A. Venkataraman. DeepEZ: A Graph Convolutional Network for Automated Epileptogenic Zone Localization from Resting-State fMRI Connectivity. – IEEE Transactions on Biomedical Engineering, Vol. 70, 2022, No 1, pp. 216-227.
  5. Werdiningsih, I., I. Puspitasari, R. Hendradi. Recognizing Daily Activities of Children with Autism Spectrum Disorder Using a Convolutional Neural Network Based on Image Enhancement. – Cybernetics and Information Technologies, Vol. 25, 2025, No 1, pp. 78-96.
  6. Karimi-Rouzbahani, H., S. Vogrin, M. Cao, C. Plummer, A. McGonigal. Multimodal and Quantitative Analysis of the Epileptogenic Zone Network in the Pre-Surgical Evaluation of Drug-Resistant Focal Epilepsy. – Neurophysiologie Clinique, Vol. 54, 2024, No 6, 103021.
  7. Berger, M., R. Licandro, K. H. Nenning, G. Langs, S. B. Bonelli. Artificial Intelligence Applied to Epilepsy Imaging: Current Status and Future Perspectives. – Revue Neurologique, Vol. 181, 2025, No 5, pp. 420-424.
  8. Sadiq, M., M. N. Kadhim, D. Al-Shammary, M. Milanova. Novel EEG Feature Selection Based on Hellinger Distance for Epileptic Seizure Detection. – Smart Health, Vol. 35, 2025, 100536.
  9. Ejaz, S., U. Noor, Z. Rashid. Visualizing Interesting Patterns in Cyber Threat Intelligence Using Machine Learning Techniques. – Cybernetics and Information Technologies, Vol. 22, 2022, No 2, pp. 96-113.
  10. Hussein, A. M., S. A. Alomari, M. H. Almomani, R. A. Zitar, K. Saleem, A. Smerat, S. Nusier, L. Abualigah. A Smart IoT-Cloud Framework with Adaptive Deep Learning for Real-Time Epileptic Seizure Detection. – Circuits, Systems, and Signal Processing, Vol. 44, 2025, No 3, pp. 2113-2144.
  11. Xu, T., Y. Wu, Y. Tang, W. Zhang, Z. Cui. Dynamic Functional Connectivity Neural Network for Epileptic Seizure Prediction Using Multi-Channel EEG Signal. – IEEE Signal Processing Letters, Vol. 31, 2024, pp. 1499-1503.
  12. Li, Z., B. Chen, N. Zhu, W. Li, T. Liu, L. Guo, J. Han, T. Zhang, Z. Yan. Epileptic Seizure Detection in SEEG Signals Using a Signal Embedding Temporal-Spatial-Spectral Transformer Model. – IEEE Transactions on Instrumentation and Measurement, Vol. 74, 2025, 4001111.
  13. Mokhiamar, M. O., A. Mahmoud, M. I. Eldagla, Y. Aribi, A. M. Anter. Blockchain-Integrated Multi-Modal LSTM-CNN Fusion for High-Precision Epileptic Seizure Detection from EEG Signals. – Knowledge-Based Systems, Vol. 323, 2025, 113703.
  14. Karthik, S. A., K. N. Bharath, B. R. Ramji, K. Puttegowda, B. Aruna, D. S. Kumar. Enhanced EEG Signal Processing for Accurate Epileptic Seizure Detection. – SN Computer Science, Vol. 6, 2025, 608.
  15. Cao, X., S. Zheng, J. Zhang, W. Chen, G. Du. A Hybrid CNN-Bi-LSTM Model with Feature Fusion for Accurate Epilepsy Seizure Detection. – BMC Medical Informatics and Decision Making, Vol. 25, 2025, 6.
  16. Fu, R., B. Zhang, B. Xue, D. Wang. A Spatiotemporal Posterior Graph Convolutional Neural Network Based on Multihead Attention with Squeeze-and-Excitation Module for Patient-Specific Epileptic Seizure Prediction. – IEEE Transactions on Instrumentation and Measurement, Vol. 74, 2025, 2517713.
  17. Sunkara, M., S. R. Reeja. Tri-SeizureDualNet: A Novel Multimodal Brain Seizure Detection Using a Triple Stream Skipped Feature Extraction Module Entrenched Dual Parallel Attention Transformer. – Biomedical Signal Processing and Control, Vol. 88, 2024, 105593.
  18. Xie, C., S. Qiu, C. Zhou, X. Song, J. Yang, J. Huang, W. Wang, H. Jiao. Automatic Epileptic Seizure Detection with an Ultra-Lightweight 3D-CNN Model. – Biomedical Signal Processing and Control, Vol. 110, 2025, 108260.
  19. Liu, Y., G. Liu, S. Wu, C. Tin. Phase Spectrogram of EEG from S-Transform Enhances Epileptic Seizure Detection. – Expert Systems with Applications, Vol. 262, 2025, 125621.
  20. Silpa, B., M. K. Hota. An Efficient Epileptic Seizure Detection Framework Based on Optimized Deep Residual Network. – Neural Computing and Applications, Vol. 37, 2025, pp. 16849-16870.
  21. Liu, Y., C. Xu, Z. Wen, Y. Dong. Trust EEG Epileptic Seizure Detection via Evidential Multi-View Learning. – Information Sciences, Vol. 694, 2025, 121699.
  22. Hosseini, M. P., T. X. Tran, D. Pompili, K. Elisevich, H. Soltanian-Zadeh. Multimodal Data Analysis of Epileptic EEG and rs-fMRI via Deep Learning and Edge Computing. – Artificial Intelligence in Medicine, Vol. 104, 2020, 101813.
  23. Lucas, A., E. J. Cornblath, N. Sinha, L. Caciagli, P. Hadar, A. Tranquille, J. M. Stein, S. Das, K. A. Davis. Seizure‐Onset Zone Lateralization in Temporal Lobe Epilepsy Using 7 T rs‐fMRI: Direct Comparison with 3 T rs‐fMRI. – Epilepsia, Vol. 66, 2022, No 9, pp. 34440-3452.
  24. Kasabov, N. Neucube Evospike Architecture for Spatio-Temporal Modelling and Pattern Recognition of Brain Signals. – In: Proc. of IAPR Workshop on Artificial Neural Networks in Pattern Recognition Berlin, Heidelberg: Springer Berlin Heidelberg, September 2012, pp. 225-243.
  25. Saeedinia, S. A., M. R. Jahed-Motlagh, A. Tafakhori, N. Kasabov. Design of MRI Structured Spiking Neural Networks and Learning Algorithms for Personalized Modelling, Analysis, and Prediction of EEG Signals. – Scientific Reports, Vol. 11, 2021, No 1, 12064.
  26. Saeedinia, S. A., M. R. Jahed-Motlagh, A. Tafakhori, N. K. Kasabov. Diagnostic Biomarker Discovery from Brain EEG Data Using LSTM, Reservoir-SNN, and NeuCube Methods in a Pilot Study Comparing Epilepsy and Migraine. – Scientific Reports, Vol. 14, 2024, No 1, 10667.
DOI: https://doi.org/10.2478/cait-2025-0041 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 209 - 228
Submitted on: Sep 25, 2025
Accepted on: Nov 10, 2025
Published on: Dec 11, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Riyazulla Rahman Jabiulla, Afroz Pasha, Pinnepalli Sadhashiviah Prasad, Mohan Devollu Narasimhamurthy, Vidya Virupaksha, Manjula Hebbala Munithimmaiah, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.