References
- Rehab, N., Y. Siwar, Z. Mourad. Machine Learning for Epilepsy: A Comprehensive Exploration of Novel EEG and MRI Techniques for Seizure Diagnosis. – Journal of Medical and Biological Engineering, Vol. 44, 2024, pp. 317-336.
- Lin, P. T., J. H. Sie, H. J. Lee, C. C. Chou, Y. C. Shih, C. Chen, F. H. Lin, W. J. Kuo, H. M. Khoo, H. Y. Yu. Detection of Epileptogenic Zones in People with Epilepsy Using Optimized EEG-fMRI. – Epilepsy & Behavior, Vol. 164, 2025, 110257.
- Aravind Britto, K. R., A. B., S. Srinivasan, S. K. Mathivanan, M. Venkatesan, B. A. Malar, S. Mallik, H. Qin. A Multi-Dimensional Hybrid CNN-BiLSTM Framework for Epileptic Seizure Detection Using Electroencephalogram Signal Scrutiny. – Systems and Soft Computing, Vol. 5, 2023, 200062.
- Nandakumar, N., D. Hsu, R. Ahmed, A. Venkataraman. DeepEZ: A Graph Convolutional Network for Automated Epileptogenic Zone Localization from Resting-State fMRI Connectivity. – IEEE Transactions on Biomedical Engineering, Vol. 70, 2022, No 1, pp. 216-227.
- Werdiningsih, I., I. Puspitasari, R. Hendradi. Recognizing Daily Activities of Children with Autism Spectrum Disorder Using a Convolutional Neural Network Based on Image Enhancement. – Cybernetics and Information Technologies, Vol. 25, 2025, No 1, pp. 78-96.
- Karimi-Rouzbahani, H., S. Vogrin, M. Cao, C. Plummer, A. McGonigal. Multimodal and Quantitative Analysis of the Epileptogenic Zone Network in the Pre-Surgical Evaluation of Drug-Resistant Focal Epilepsy. – Neurophysiologie Clinique, Vol. 54, 2024, No 6, 103021.
- Berger, M., R. Licandro, K. H. Nenning, G. Langs, S. B. Bonelli. Artificial Intelligence Applied to Epilepsy Imaging: Current Status and Future Perspectives. – Revue Neurologique, Vol. 181, 2025, No 5, pp. 420-424.
- Sadiq, M., M. N. Kadhim, D. Al-Shammary, M. Milanova. Novel EEG Feature Selection Based on Hellinger Distance for Epileptic Seizure Detection. – Smart Health, Vol. 35, 2025, 100536.
- Ejaz, S., U. Noor, Z. Rashid. Visualizing Interesting Patterns in Cyber Threat Intelligence Using Machine Learning Techniques. – Cybernetics and Information Technologies, Vol. 22, 2022, No 2, pp. 96-113.
- Hussein, A. M., S. A. Alomari, M. H. Almomani, R. A. Zitar, K. Saleem, A. Smerat, S. Nusier, L. Abualigah. A Smart IoT-Cloud Framework with Adaptive Deep Learning for Real-Time Epileptic Seizure Detection. – Circuits, Systems, and Signal Processing, Vol. 44, 2025, No 3, pp. 2113-2144.
- Xu, T., Y. Wu, Y. Tang, W. Zhang, Z. Cui. Dynamic Functional Connectivity Neural Network for Epileptic Seizure Prediction Using Multi-Channel EEG Signal. – IEEE Signal Processing Letters, Vol. 31, 2024, pp. 1499-1503.
- Li, Z., B. Chen, N. Zhu, W. Li, T. Liu, L. Guo, J. Han, T. Zhang, Z. Yan. Epileptic Seizure Detection in SEEG Signals Using a Signal Embedding Temporal-Spatial-Spectral Transformer Model. – IEEE Transactions on Instrumentation and Measurement, Vol. 74, 2025, 4001111.
- Mokhiamar, M. O., A. Mahmoud, M. I. Eldagla, Y. Aribi, A. M. Anter. Blockchain-Integrated Multi-Modal LSTM-CNN Fusion for High-Precision Epileptic Seizure Detection from EEG Signals. – Knowledge-Based Systems, Vol. 323, 2025, 113703.
- Karthik, S. A., K. N. Bharath, B. R. Ramji, K. Puttegowda, B. Aruna, D. S. Kumar. Enhanced EEG Signal Processing for Accurate Epileptic Seizure Detection. – SN Computer Science, Vol. 6, 2025, 608.
- Cao, X., S. Zheng, J. Zhang, W. Chen, G. Du. A Hybrid CNN-Bi-LSTM Model with Feature Fusion for Accurate Epilepsy Seizure Detection. – BMC Medical Informatics and Decision Making, Vol. 25, 2025, 6.
- Fu, R., B. Zhang, B. Xue, D. Wang. A Spatiotemporal Posterior Graph Convolutional Neural Network Based on Multihead Attention with Squeeze-and-Excitation Module for Patient-Specific Epileptic Seizure Prediction. – IEEE Transactions on Instrumentation and Measurement, Vol. 74, 2025, 2517713.
- Sunkara, M., S. R. Reeja. Tri-SeizureDualNet: A Novel Multimodal Brain Seizure Detection Using a Triple Stream Skipped Feature Extraction Module Entrenched Dual Parallel Attention Transformer. – Biomedical Signal Processing and Control, Vol. 88, 2024, 105593.
- Xie, C., S. Qiu, C. Zhou, X. Song, J. Yang, J. Huang, W. Wang, H. Jiao. Automatic Epileptic Seizure Detection with an Ultra-Lightweight 3D-CNN Model. – Biomedical Signal Processing and Control, Vol. 110, 2025, 108260.
- Liu, Y., G. Liu, S. Wu, C. Tin. Phase Spectrogram of EEG from S-Transform Enhances Epileptic Seizure Detection. – Expert Systems with Applications, Vol. 262, 2025, 125621.
- Silpa, B., M. K. Hota. An Efficient Epileptic Seizure Detection Framework Based on Optimized Deep Residual Network. – Neural Computing and Applications, Vol. 37, 2025, pp. 16849-16870.
- Liu, Y., C. Xu, Z. Wen, Y. Dong. Trust EEG Epileptic Seizure Detection via Evidential Multi-View Learning. – Information Sciences, Vol. 694, 2025, 121699.
- Hosseini, M. P., T. X. Tran, D. Pompili, K. Elisevich, H. Soltanian-Zadeh. Multimodal Data Analysis of Epileptic EEG and rs-fMRI via Deep Learning and Edge Computing. – Artificial Intelligence in Medicine, Vol. 104, 2020, 101813.
- Lucas, A., E. J. Cornblath, N. Sinha, L. Caciagli, P. Hadar, A. Tranquille, J. M. Stein, S. Das, K. A. Davis. Seizure‐Onset Zone Lateralization in Temporal Lobe Epilepsy Using 7 T rs‐fMRI: Direct Comparison with 3 T rs‐fMRI. – Epilepsia, Vol. 66, 2022, No 9, pp. 34440-3452.
- Kasabov, N. Neucube Evospike Architecture for Spatio-Temporal Modelling and Pattern Recognition of Brain Signals. – In: Proc. of IAPR Workshop on Artificial Neural Networks in Pattern Recognition Berlin, Heidelberg: Springer Berlin Heidelberg, September 2012, pp. 225-243.
- Saeedinia, S. A., M. R. Jahed-Motlagh, A. Tafakhori, N. Kasabov. Design of MRI Structured Spiking Neural Networks and Learning Algorithms for Personalized Modelling, Analysis, and Prediction of EEG Signals. – Scientific Reports, Vol. 11, 2021, No 1, 12064.
- Saeedinia, S. A., M. R. Jahed-Motlagh, A. Tafakhori, N. K. Kasabov. Diagnostic Biomarker Discovery from Brain EEG Data Using LSTM, Reservoir-SNN, and NeuCube Methods in a Pilot Study Comparing Epilepsy and Migraine. – Scientific Reports, Vol. 14, 2024, No 1, 10667.
