Have a personal or library account? Click to login
Inferring Biomedical Networks Using Multivariate Information Theory: Open-Source Code and Tutorial Cover

Inferring Biomedical Networks Using Multivariate Information Theory: Open-Source Code and Tutorial

Open Access
|Dec 2025

References

  1. Schwab, J. D., S. D. Kühlwein, N. Ikonomi, M. Kühl, H. A. Kestler. Concepts in Boolean Network Modeling: What Do They All Mean? – Computational and Structural Biotechnology Journal, Vol. 18, 2020, pp. 571-582.
  2. Delgado, F. M., F. Gómez-Vela. Computational Methods for Gene Regulatory Networks Reconstruction and Analysis: A Review. – Artificial Intelligence in Medicine, Vol. 95, 2019, pp. 133-145.
  3. Milano, M., G. Agapito, M. Cannataro. Challenges and Limitations of Biological Network Analysis. – BioTech. (Basel), Vol. 11, 2022, No 3, 24.
  4. Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C D. Bloomfield, E. S. Lander. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. – Science, Vol. 286, 1999, pp. 531-537.
  5. Furey, T. S., N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, D. Haussler. Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. – Bioinformatics, Vol 16, 2000, pp. 906-914.
  6. Khan, J., J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, P. S. Meltzer. Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and an Artificial Neural Network. – Nature Medicine, Vol. 7, 2001, No 6, pp. 673-679.
  7. Chen, W., H. Lu, M. Wang. Gene Expression Data Classification Using Artificial Neural Network Ensembles Based on Samples Filtering. – International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 2009, pp. 626-628.
  8. Vanitha, C. D. A., D. Devaraj, M. Venkatesulu. Gene Expression Data Classification Using Support Vector Machine and Mutual Information-Based Gene Selection. – Procedia Computer Science, Vol. 47, 2015, pp. 13-21.
  9. Fan, L., K. L. Poh, P. Zhou. A Sequential Feature Extraction Approach for Naïve Bayes Classification of Microarray Data. – Expert Systems with Applications, Vol. 36, 2009, pp. 9919-9923.
  10. Fan, L., K. L. A Comparative Study of PCA, ICA, and Class-Conditional ICA for Naïve Bayes Classifier. – In: F. Sandoval, A. Prieto, J. Cabestany, M. Graña, Eds. Conference: Computational and Ambient Intelligence, Computational and Ambient Intelligence (IWANN), Lecture Notes in Computer Science. Vol. 4507. 2007, Berlin, Heidelberg, Springer, Poh. pp. 16-22. ISBN: 978-3-540-73006-4.
  11. Maulik, U., A. Mukhopadhyay, S. Bandyopadhyay. Combining Pareto-Optimal Clusters Using Supervised Learning for Identifying Co-Expressed Genes. – BMC Bioinformatics, Vol. 10, 2009, pp. 1-16.
  12. Mukhopadhyay, A., S. Bandyopadhyay, U. Maulik. Multi-Class Clustering of Cancer Subtypes through SVM-Based Ensemble of Pareto-Optimal Solutions for Gene Marker Identification. – PLoS One, Vol. 5, 2010, pp. 1-14.
  13. Bhuvaneswari, V., K. Vanitha. Classification of Microarray Gene Expression Data by Gene Combinations Using Fuzzy Logic (MGC-FL). – International Journal of Computer Science Engineering and Application, Vol. 2, 2012, pp. 79-98.
  14. Cilia, N. D., D. Stefano, C. F. Fontanella, S. Raimondo, A. Cotto. An Experimental Comparison of Feature-Selection and Classification Methods for Microarray Datasets. – Information, Vol. 10, 2019, No 3, pp. 1-13. DOI: 10.3390/info10030109.
  15. Lee, J., I. Choi, C. H. Jun. An Efficient Multivariate Feature Ranking Method for Gene Selection in High-Dimensional Microarray Data. – Expert Systems with Applications, Vol. 166, 2021, pp. 1-9.
  16. Helmy, M., R. Agrawal, J. Ali, M. Soudy, T. T. Bui, K. Selvarajoo. GeneCloudOmics: A Data Analytic Cloud Platform for High-Throughput Gene Expression Analysis. – Frontiers in Bioinformatics, Vol. 1, 2021, pp. 1-14.
  17. Widiharto, M., A. Soeleman, A. Syukur. Performance Improvement of Naïve Bayes Algorithm Based on Information Gain and Forward Selection Features Selection for Heart Disease Classification. – IOSR Journal of Computer Engineering, Vol. 24, 2022, No 3, pp. 69-79.
  18. Wahid, A., M. T. Banday. Classification of DNA Microarray Gene Expression Leukemia Data through the ABC and CNN Methods. – International Journal of Intelligent Systems and Application in Engineering, Vol. 11, 2023, No 75, pp. 119-131.
  19. Majumder, D. Application of Information Theory for Understanding of HLA Gene Regulation in Leukemia. – In: Advances in Computing & Information Technology, Advances in Intelligent Systems and Computing. Vol. 177. Berlin, Heidelberg, Springer, 2013, pp.161-173. ISBN: 978-3-642-31551-0.
  20. Das, B., D. Majumder. Maximum Entropy-Based Multivariate Dependence Analysis with a Case Study for HLA Gene Regulatory Network in Human Leukemia. – International Journal of Information Engineering, Vol. 3, 2013, No 4, pp. 137-142.
  21. Das, B., D. Majumder. Differences of HLA Gene Regulatory Network in Human Myeloid and Lymphoid Leukemias. – In: Proc. of International Conference on Bioinformatics and Systems Biology, 2018, pp. 165-169. DOI: 10.1109/BSB.2018.8770568.
  22. Jetka, T., K. Nienaltowski, S. Filippi, M. P. H. Stumpf, M. Komorowski. An Information-Theoretic Framework for Deciphering Pleiotropic and Noisy Biochemical Signaling. – Nature Communications, Vol. 9, 2018, No 4591, pp. 1-9.
  23. Martino, A. D., D. Martino. An Introduction to the Maximum Entropy Approach and Its Application to Inference Problems in Biology. – Heliyon, Vol. 4, 2018, No 4, pp. 1-33.
  24. Conforte, A. J., J. A. Tuszynski, F. D. Barbosa, N. Carels. Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine. – Frontiers in Genetics, Vol. 10, 2019, pp. 1-14.
  25. Karolak, A., S. Branciamore, J. S. McCune, P. P. Lee. Concepts and Applications of Information Theory to Immune-Oncology. – Trends in Cancer, Vol. 7, 2021, No 4, pp. 335-346.
  26. Billing, U., T. Jetka, L. Nortmann, N. Wundrack, M. Komorowski, S. Waldherr, F. Schaper, A. Dittrich. Robustness and Information Transfer within IL-6-Induced JAK/STAT Signaling. – Communications Biology, Vol. 2, 2019, No 27, pp. 1-14.
  27. Dixit, P. D., E. Lyashenko, M. Niepel, D. Vitkup. Maximum Entropy Framework for Predictive Inference of Cell Population Heterogeneity and Responses in Signaling Networks. – Cell Systems, Vol. 10, 2020, No 2, pp. 204-212.
  28. Guo, Z., Y. Fu, C. Huang, C. Zheng, Z. Wu, X. Chen, S. Gao, Y. Ma, M. Shahen, Y. Li, P. Tu, J. Zhu, Z. Wang, W. Xiao, Y. Wang. NOGEA: A Network-Oriented Gene Entropy Approach for Dissecting Disease Comorbidity and Drug Respositioning. – Bioinformatics, Vol. 19, 2021, No 4, pp. 549-564.
  29. Ameri, A. J., Z. A. Lewis. Shannon Entropy as a Metric for Conditional Gene Expression in Neurospora Crassa. – G3 Genes| Genomes| Genetics, Vol. 11, 2021, No 4, pp. 1-7.
  30. Das, M., D. Majumder. Development of an Algorithm for Gene Expression Analysis through MaxEnt-Based Multivariate Information Theory. – In: International Conference on Intelligent Communication and Computational Techniques (ICCT’17), New York, New Jersey, IEEE, 2017, pp. 217-222. DOI: 10.1109/INTELCCT.2017.8324048.
  31. Greven, A., G. Keller, G. Warnecke. Entropy. Princeton, NJ, USA, Princeton University Press, 2014, 384 p.
  32. Demirel, Y., V. Gerbaud. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical, and Biological Systems. – Amsterdam, The Netherlands, Elsevier, 2019.
  33. Jakimowicz, A. The Role of Entropy in the Development of Economics. – Entropy, Vol. 22, 2020, No 4, p. 452. DOI: 10.3390/e22040452.
  34. Rostaghi, M., H. Azam. Dispersion Entropy: A Measure for Time-Series Analysis. – IEEE Signal Processing Letters, Vol. 23, 2016, pp. 610-614.
  35. Reynar, J. C., A. Ratnaparkhi. A Maximum Entropy Approach to Identifying Sentence Boundaries. – In: Proc. of 5th Conference on Applied Natural Language Processing. Association for Computational Linguistics, Stroudsburg, PA, USA, 1997, pp. 16-19.
  36. Shannon, C. E. A Mathematical Theory of Communication. – The Bell System Technical Journal, Vol. 27, 1948, pp. 379-423.
  37. Petrov, I. I. Information Systems Reliability in Traditional Entropy and Novel Hierarchy. – Cybernetics and Information Technologies, Vol. 22, 2022, No 3, pp. 1-15.
  38. Majumder, D. HLA Expression in Leukemia: Status, Regulation & Therapeutic Implications of HLA Expression in Leukemia.– USA & UK: LAMBERT Academic Publishing GmbH & Co., Canada, India, Germany, 2012. ISBN: 978-3-8484-3247-9.
  39. Gibbs, J. W. Elementary Principles in Statistical Mechanics. – New York, Dover Publications, 1960 (Reprint of 1902). ISBN: 10: 0486607070.
  40. Das, B., D. Majumder. Information Theory-Based Analysis for Understanding the Regulation of HLA Gene Expression in Human Leukemia. – International Journal of Information Sciences and Techniques, Vol. 2, 2012, No 5, pp. 39-50.
  41. Bansall, M., V. Belcastro, A. A. Impiombato, D. D. Bernardo. How to Infer Gene Networks from Expression Profiles. – Molecular Systems Biology, EMBO, Vol. 3, 2007, No 78, pp. 1-10.
  42. Teschendorff, A. E., S. Severini. Increased Entropy of Signal Transduction in the Cancer Metastasis Phenotype. – BMC Systems Biology, Vol. 4, 2010, No 1, 104.
  43. Majumder, D., A. Mukherjee. A Passage through Systems Biology to Systems Medicine: Adoption of Middle-Out Rational Approaches towards the Understanding of Clinical Outcome in Cancer Therapy. – Analyst, Vol. 136, 2011, pp. 663-678.
  44. Majumder, D., A. Mukherjee. Multi-Scale Modeling Approaches in Systems Biology Towards the Assessment of Cancer Treatment Dynamics: Adoption of Middle-out Rationalist Approach. – In: Advances in Cancer: Research & Treatment, 2013, Article ID 587889.
  45. Wieringen, V., V. D. Vaart. Statistical Analysis of the Cancer Cell’s Molecular Entropy Using High-Throughput Data. – Bioinformatics, Vol. 27, 2011, No 4, pp. 556-563.
  46. Margolin, A. A., K. Wang, A. Califano, I. Nemenman. Multivariate Dependence and Genetic Networks Inference, – IET Systems Biology, Vol. 4, No 6, 2010, pp. 428-440.
  47. GNU Octave Wiki (Assessed on 06.05.2024). https://wiki.octave.org/Publications_using_Octave,
  48. Prinz, H. Numerical Methods for the Life Scientist: Binding and Enzyme Kinetics Calculated with GNU Octave and MATLAB. Springer, Heidelberg, Dordrecht, London, New York, 2011.
  49. Ranjan, M. K., K. Barot, V. Khairnar, V. Rawal, A. Pimpalgaonkar, S. Saxena, A. M. Sattar. Python: Empowering Data Science Applications and Research. – Journal of Operating Systems Development & Trends, Vol. 10, 2023, No 1, pp. 27-33.
  50. Singh, P., A. E. Oke, A. F. Kineber, O. I. Olanrewaju, O. Omole, M. S. Samsurijan, R. A. Ramli. A Mathematical Analysis of 4IR Innovation Barriers in Developmental Social Work – A Structural Equation Modeling Approach. – In: Article in Mathematics, Vol. 11, 2023, No 1003, pp. 1-20.
  51. West, J., G. Bianconi, S. Severini, A. E. Teschendorff. Differential Network Entropy Reveals Cancer System Hallmarks. – Scientific Reports. Vol. 2, 2012, No 1, p.802.
  52. Barnes, N. Publish Your Computer Code: It Is Good Enough. – Nature, Vol. 467, 2010, No 7317, 753.
  53. Roberts, M., D. Driggs, M. Thorpe et al. Common Pitfalls and Recommendations for Using Machine Learning to Detect and Prognosticate for COVID-19 Using Chest Radiographs and CT Scans. – Nature Machine Intelligence, Vol. 3, 2021, pp. 199-217.
DOI: https://doi.org/10.2478/cait-2025-0040 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 193 - 208
Submitted on: Jun 27, 2025
Accepted on: Oct 20, 2025
Published on: Dec 11, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Madhumita Das, Bishwajit Das, Ishaan Majumder, Durjoy Majumder, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.