Have a personal or library account? Click to login
A Survey on Automated Pain Recognition and Assessment Using Multimodal Cover

A Survey on Automated Pain Recognition and Assessment Using Multimodal

Open Access
|Dec 2025

References

  1. Raja, S. N., D. B. Carr, M. Cohen et al. The Revised International Association for the Study of Pain Definition of Pain: Concepts, Challenges, and Compromises. – Pain, Vol. 161, 2020, No 9, pp. 1976-1982.
  2. Bhatt, R. R. Decoding the Neurological and Genetic Underpinnings of Chronic Pain. University of Southern California, 2024.
  3. El-Tallawy, S. N., J. V. Pergolizzi, I. Vasiliu-Feltes, R. S. Ahmed, J. K. LeQuang, H. N. El-Tallawy, G. Varrassi, M. S. Nagiub. Incorporation of “Artificial Intelligence” for Objective Pain Assessment: A Comprehensive Review. – Pain and Therapy, 2024, pp. 1-25.
  4. Løkeland, L. S., F. Guribye, A. Stensvold, I. Grindheim. Tangible Interactions for Pain Assessment in Palliative Care. – In: Proc. of 13th Nordic Conference on Human-Computer Interaction, 2024, pp. 1-15.
  5. Ben Aoun, N. A Review of Automatic Pain Assessment from Facial Information Using Machine Learning. – Technologies, Vol. 12, 2024, No 6, 92.
  6. Hadjiat, Y., L. Arendt-Nielsen. Digital Health in Pain Assessment, Diagnosis, and Management: Overview and Perspectives. – Frontiers in Pain Research, Vol. 4, 2023, 1097379.
  7. Murala, D. K., S. K. Panda, S. P. Dash. MedMetaverse: Medical Care of Chronic Disease Patients and Managing Data Using Artificial Intelligence, Blockchain, and Wearable Devices, State-of-the-Art Methodology. – IEEE Access, Vol. 11, 2023, pp. 138954-138985.
  8. Fontaine, D., V. Vielzeuf, P. Genestier, P. Limeux, S. Santucci-Sivilotto, E. Mory, N. Darmon, M. Lanteri-Minet, M. Mokhtar, M. Laine, D. Vistoli. Artificial Intelligence to Evaluate Postoperative Pain Based on Facial Expression Recognition. – European Journal of Pain, Vol. 26, 2022, No 6, pp. 1282-1291.
  9. Barua, P. D., N. Baygin, S. Dogan, M. Baygin, N. Arunkumar, H. Fujita, T. Tuncer, R. S. Tan, E. Palmer, M. M. Azizan, N. A. Kadri. Automated Detection of Pain Levels Using Deep Feature Extraction from Shutter Blinds-Based, Dynamically Sized Horizontal Patches with Facial Images. – Scientific Reports, Vol. 12, 2022, No 1, 17297.
  10. Kelati, A., E. Nigussie, I. B. Dhaou, J. Plosila, H. Tenhunen. Real-Time Classification of Pain Level Using Zygomaticus and Corrugator EMG Features. – Electronics, Vol. 11, 11 January 2022, 1671.
  11. Benavent-Lledo, M., D. Mulero-Pérez, D. Ortiz-Pérez, J. Rodríguez-Juan, A. Berenguer-Agullo, A. Psarrou, J. García-Rodríguez. A Comprehensive Study on Pain Assessment from Multimodal Sensor Data. – Semsors, Vol. 23, 2023, No 24, 9675.
  12. Fang, J., W. Wu, J. Liu, S. Zhang. Deep Learning-Guided Postoperative Pain Assessment in Children. – Pain, Vol. 164, 2023, No 9, pp. 2029-2035.
  13. Ghosh, A., S. Umer, M. K. Khan, R. K. Rout, B. C. Dhara. Smart Sentiment Analysis System for Pain Detection Using Cutting-Edge Techniques in a Smart Healthcare Framework. – Cluster Computing, Vol. 26, 2023, No 1, pp. 119-135.
  14. Safavi, F., K. Patel, R. K. Vinjamuri. Towards Efficient Deep Learning Models for Facial Expression Recognition Using Transformers. – In: Proc. of 19th IEEE International Conference on Body Sensor Networks (BSN’23), IEEE, 9 October 2023, pp. 1-4.
  15. Mendu, S., S. L. Doyle Fosco, S. T. Lanza, S. Abdullah. Designing Voice Interfaces to Support Mindfulness-Based Pain Management. – Digital Health, Vol. 9, 2023, pp. 1-15.
  16. Lu, Z., B. Ozek, S. Kamarthi. Transformer Encoder with Multiscale Deep Learning for Pain Classification Using Physiological Signals. – Frontiers in Physiology, Vol. 14, 2023, 1294577.
  17. Sabater-Gárriz, Á., F. X. Gaya-Morey, J. M. Buades-Rubio, C. Manresa-Yee, P. Montoya, I. Riquelme. Automated Facial Recognition System Using Deep Learning for Pain Assessment in Adults with Cerebral Palsy. – Digital Health, Vol. 10, 2024, pp. 1-22.
  18. Zheng, J., Y. Lin. Using Physiological Signals for Pain Assessment: An Evaluation of Deep Learning Models. – In: Proc. of 30th IEEE International Conference on Mechatronics and Machine Vision in Practice (M2VIP’24), 3 October 2024, pp. 1-6.
  19. Hausmann, J., M. S. Salekin, G. Zamzmi, P. R. Mouton, S. Prescott, T. Ho, Y. Sun, D. Goldgof. Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting. – IEEE Access, Vol. 1, 1 April 2024.
  20. Kristian, Y., N. Simogiarto, M. T. Sampurna, E. Hanindito. Ensemble of Multimodal Deep Learning Autoencoder for Infant Cry and Pain Detection. Version 1; Peer Review: 1 Approved, 2022.
  21. Sandeep, P. V., N. S. Kumar. Pain Detection through Facial Expressions in Children with Autism Using Deep Learning. – Soft Computing, Vol. 28, March 2024, No 5, pp. 4621-4630.
  22. Talaat, F. M., Z. H. Ali, R. R. Mostafa, N. El-Rashidy. Real-Time Facial Emotion Recognition Model Based on Kernel Autoencoder and Convolutional Neural Network for Autism Children. – Soft Computing, Vol. 28, May 2024, No 9, pp. 6695-6708.
  23. Aliradi, R., N. Chenni, M. Touami. Estimation for Pain from Facial Expression Based on XQEDA and Deep Learning. – International Journal of Information Technology, Vol. 17, January 2025, No 1, pp. 655-663.
  24. Abdallah, I. B., Y. Bouteraa. An Optimized Stimulation Control System for Upper Limb Exoskeleton Robot-Assisted Rehabilitation Using a Fuzzy Logic-Based Pain Detection Approach. – Sensors, Vol. 24, 6 Feb 2024 No 4, 1047.
  25. Wahab Sait, A. R., A. K. Dutta. Developing a Pain Identification Model Using a Deep Learning Technique. – Journal of Disability Research, Vol. 3, 4 April 2024, No 3, 20240028.
  26. Gutierrez, R., J. Garcia-Ortiz, W. Villegas-Ch. Multimodal AI Techniques for Pain Detection: Integrating Facial Gesture and Paralanguage Analysis. – Frontiers in Computer Science, Vol. 6, 29 July 2024, 1424935.
  27. Dáad, A., W. Aljebreen, D. M. Ibrahim. PainMeter: Automatic Assessment of Pain Intensity Levels from Multiple Physiological Signals Using Machine Learning. – IEEE Access, Vol. 12, 2024, pp. 48349-48365.
  28. https://github.com/philippwerner/pain-database-list?tab=readme-ov-file#unbc-mcmaster-shoulder-pain-expression-archive-database
  29. Lucey, P., J. F. Cohn, K. M. Prkachin, P. E. Solomon, I. Matthews. Painful Data: The UNBC-McMaster Shoulder Pain Expression Archive Database. – In: Proc. of IEEE International Conference on Automatic Face & Gesture Recognition (FG’11), IEEE, 21 March 2011, pp. 57-64.
  30. Zhang, L., S. Walter, X. Ma, P. Werner, A. Al-Hamadi, H. C. Traue, S. Gruss. BioVid Emo DB: A Multimodal Database for Emotion Analyses Validated by Subjective Ratings. – In: Proc. of IEEE Symposium Series on Computational Intelligence (SSCI’16), IEEE, 6 December 2016, pp. 1-6.
  31. Zhang, X., L. Yin, J. F. Cohn, S. Canavan, M. Reale, A. Horowitz, P. Liu, J. M. Girard. Bp4d-Spontaneous: A High-Resolution Spontaneous 3D Dynamic Facial Expression Database. – Image and Vision Computing, Vol. 32, 2014, No 10, pp. 692-706.
  32. Zhang, Z., J. M. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci, S. Canavan, M. Reale, A. Horowitz, H. Yang, J. F. Cohn. Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis. – In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3438-3446.
  33. Brahnam, S., C. F. Chuang, F. Y. Shih, M. R. Slack. SVM Classification of Neonatal Facial Images of Pain. – In: I. Bloch, A. Petrosino, A. G. B. Tettamanzi, Eds. Fuzzy Logic and Applications. Lecture Notes in Computer Science. Vol. 384. Springer, Berlin, Heidelberg, 2005, pp. 111-115.
  34. Kolsoum, D., R. Froutan, A. Ebadi. Challenges Faced by Nurses in Using the Pain Assessment Scale in Patients Unable to Communicate: A Qualitative Study. – BMC Nursing, Vol. 17, 2018, pp. 1-8.
  35. Harrison, D., M. Sampson, J. Reszel, K. Abdulla, N. Barrowman, J. Cumber, A. Fuller, C. Li, S. Nicholls, C. M. Pound. Too Many Crying Babies: A Systematic Review of Pain Management Practices during Immunizations on YouTube. – BMC Pediatrics, Vol. 14, 2014, pp. 1-8.
  36. Mittal, Vinay Kumar. Discriminating the Infant Cry Sounds due to Pain vs Discomfort towards Assisted Clinical Diagnosis. – In: Proc. of 7th Workshop on Speech and Language Processing for Assistive Technologies (SLPAT’16), 2016.
  37. Berthouze, N., M. Valstar, A. Williams, J. Egede, T. Olugbade, C. Wang, H. Meng, M. Aung, N. Lane, S. Song. Emopain Challenge 2020: Multimodal Pain Evaluation from Facial and Bodily Expressions. – arXiv. 2020 Jan.arXiv-2001.
  38. Aung, M. S., S. Kaltwang, B. Romera-Paredes, B. Martinez, A. Singh, M. Cella, M. Valstar, H. Meng, A. Kemp, M. Shafizadeh, A. C. Elkins. The Automatic Detection of Chronic Pain-Related Expression: Requirements, Challenges, and the Multimodal EmoPain Dataset. – IEEE Transactions on Affective Computing, Vol. 7, 2015, No 4, pp. 435-351.
  39. Velana, M., S. Gruss, G. Layher, P. Thiam, Y. Zhang, D. Schork, V. Kessler, S. Meudt, H. Neumann, J. Kim, F. Schwenker. The Senseemotion Database: A Multimodal Database for the Development and Systematic Validation of an Automatic Pain-and Emotion-Recognition System. – In: Proc. of 4th IAPR TC 9 Workshop, Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction (MPRSS’16), Cancun, Mexico, 4 December 2016, Springer International Publishing, Revised Selected Papers, Vol. 4, 2017, pp. 127-139).
  40. Gruss, S., M. Geiger, P. Werner, O. Wilhelm, H. C. Traue, A. Al-Hamadi, S. Walter. Multi-Modal Signals for Analyzing Pain Responses to Thermal and Electrical Stimuli. 2016.
  41. Darnall, B. D., A. Roy, A. L. Chen, M. S. Ziadni, R. T. Keane, D. S. You, K. Slater, H. Poupore-King, I. Mackey, M. C. Kao, K. F. Cook. Comparison of a Single-Session Pain Management Skills Intervention with a Single-Session Health Education Intervention and 8 Sessions of Cognitive Behavioral Therapy in Adults with Chronic Low Back Pain: A Randomized Clinical Trial. – JAMA Network Open, Open, Vol. 4, 2 August 2021, No 8, pp. 1-16.
  42. Werner, P., D. Lopez-Martinez, S. Walter, A. Al-Hamadi, S. Gruss, R. W. Picard. Automatic Recognition Methods Supporting Pain Assessment: A Survey. – IEEE Transactions on Affective Computing, Vol. 13, 14 October 2019, No 1, 53052.
  43. Haque, M. A., R. B. Bautista, F. Noroozi, K. Kulkarni, C. B. Laursen, R. Irani, M. Bellantonio, S. Escalera, G. Anbarjafari, K. Nasrollahi, O. K. Andersen. Deep Multimodal Pain Recognition: A Database and Comparison of Spatio-Temporal Visual Modalities. – In: Proc. of 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG’18), IEEE, 15 May 2018, pp. 250-257.
  44. Cascella, M., F. Monaco, O. Piazza. Artificial Intelligence and Pain Medicine: an Introduction. – Journal of Pain Research, 31 December 2024, pp. 1735-1736.
  45. Tian, Y. Artificial Intelligence Image Recognition Method Based on Convolutional Neural Network Algorithm. – IEEE Access, Vol. 8, 30 Juni 2020, pp. 125731-125744.
  46. Serraoui, I., E. Granger, A. Hadid, A. Taleb-Ahmed. Pain Analysis Using Adaptive Hierarchical Spatiotemporal Dynamic Imaging. – arXiv preprint arXiv 2312.06920. 12 December 2023.
  47. Fontaine, D., V. Vielzeuf, P. Genestier, P. Limeux, S. Santucci-Sivilotto, E. Mory, N. Darmon, M. Lanteri-Minet, M. Mokhtar, M. Laine, D. Vistoli. Artificial Intelligence to Evaluate Postoperative Pain Based on Facial Expression Recognition. – European Journal of Pain, Vol. 26, 2022, No 6, pp. 1282-1291.
  48. El-Tallawy, S. N., R. S. Ahmed, S. M. Shabi, F. Z. Al-Zabidi, A. R. Zaidi, G. Varrassi, J. V. Pergolizzi, J. A. LeQuang, A. Paladini, S. N. EL-Tallawy, F. Z. Al-Zabidi. The Challenges of Pain Assessment in Geriatric Patients with Dementia: A Review. – Cureus, Vol. 15, 2023, No 11.
  49. Gkikas, S., N. S. Tachos, S. Andreadis, V. C. Pezoulas, D. Zaridis, G. Gkois, A. Matonaki, T. G. Stavropoulos, D. I. Fotiadis. Multimodal Automatic Assessment of Acute Pain through Facial Videos and Heart Rate Signals Utilizing Transformer-Based Architectures. – Frontiers in Pain Research, Vol. 5, 2024, 1372814.
  50. Prkachin, K. M., Z. Hammal. Computer Mediated Automatic Detection of Pain-Related Behavior: Prospect, Progress, Perils. – Frontiers in Pain Research, Vol. 3, 2022, 849950.
  51. Fang, J., W. Wu, J. Liu, S. Zhang. Deep Learning-Guided Postoperative Pain Assessment in Children. – Pain, Vol. 164, 2023, No 9, pp. 2029-2035.
  52. Voytovich, L., C. Greenberg. Natural Language Processing: Practical Applications in Medicine and Investigation of Contextual Autocomplete. – In: Machine Learning in Clinical Neuroscience: Foundations and Applications. Cham, Springer International Publishing, 2021, pp. 207-214.
  53. Cascella, M., D. Schiavo, A. Cuomo, A. Ottaiano, F. Perri, R. Patrone, S. Migliarelli, E. G. Bignami, A. Vittori, F. Cutugno. Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives. – Pain Research and Management, Vol. 2023, 2023, No 1, 6018736.
  54. Carlson, L. A., W. M. Hooten. Pain – Linguistics and Natural Language Processing. – Mayo Clinic Proceedings: Innovations, Quality & Outcomes, Vol. 4, 2020, No 3, pp. 346-347.
  55. Ghosh, A., B. C. Dhara, C. Pero, S. Umer. A Multimodal Sentiment Analysis System for Recognizing Person Aggressiveness in Pain Based on Textual and Visual Information. – Journal of Ambient Intelligence and Humanized Computing, Vol. 14, 2023, No 4, pp. 4489-4501.
  56. Moosaei, M., S. K. Das, D. O. Popa, L. D. Riek. Using Facially Expressive Robots to Calibrate Clinical Pain Perception. – In: Proc. of 2017 ACM/IEEE International Conference on Human-Robot Interaction, 6 March 2017, pp. 32-41.
  57. Dai, L., J. Broekens, K. P. Truong. Real-Time Pain Detection in Facial Expressions for Health Robotics. – In: Proc. of 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW’19), 3 September 2019, pp. 277-283.
  58. Higgins, A., A. Llewellyn, E. Dures, P. Caleb-Solly. Robotics Technology for Pain Treatment and Management: A Review. – In: Proc. of International Conference on Social Robotics, Cham, Springer Nature Switzerland, 13 Decemer 2022, pp. 534-545.
  59. Susam, B. T., N. T. Riek, M. Akcakaya, X. Xu, V. R. de Sa, H. Nezamfar, D. Diaz, K. D. Craig, M. S. Goodwin, J. S. Huang. Automated Pain Assessment in Children Using Electrodermal Activity and Video Data Fusion via Machine Learning. – IEEE Transactions on Biomedical Engineering, Vol. 69, 2021, No 1, pp. 422-431.
  60. Fatemeh, P., S. Radhakrishnan, S. Kamarthi. Exploration of Physiological Sensors, Features, and Machine Learning Models for Pain Intensity Estimation. – Plos one, Vol. 16, 2021, No 7, e0254108.
  61. Sikka, K., A. A. Ahmed, D. Diaz, M. S. Goodwin, K. D. Craig, M. S. Bartlett, J. S. Huang. Automated Assessment of Children’s Postoperative Pain Using Computer Vision. – Pediatrics, Vol. 136, 2015, No 1, pp. e124-e131.
  62. Sabater-Gárriz, Á., J. Molina-Mula, P. Montoya, I. Riquelme. Pain Assessment Tools in Adults with Communication Disorders: Systematic Review and Meta-Analysis. – BMC Neurology, Vol. 24, 2024, No 1., 66.
  63. Pinzon-Arenas, J. O., Y. Kong, K. H. Chon, H. F. Posada-Quintero. Design and Evaluation of Deep Learning Models for Continuous Acute Pain Detection Based on Phasic Electrodermal Activity. – IEEE Journal of Biomedical and Health Informatics, Vol. 27, 2023, No 9, pp. 4250-4260.
  64. Kong, Y., H. F. Posada-Quintero, K. H. Chon. Pain Detection Using a Smartphone in Real Time. – In: Proc. of 42nd IEEE Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC’20), IEEE, 20 July 2020, pp. 4526-4529.
  65. Naeini, E. K., S. Shahhosseini, A. Subramanian, T. Yin, A. M. Rahmani, N. Dutt. An Edge-Assisted and Smart System for Real-Time Pain Monitoring. – In: Proc. of IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE’19), IEEE, 25 September 2019, pp. 47-52.
  66. Barreveld, A. M., M. L. Rosén Klement, S. Cheung, U. Axelsson, J. I. Basem, A. S. Reddy, C. A. Borrebaeck, N. Mehta. An Artificial Intelligence-Powered, Patient-Centric Digital Tool for Self-Management of Chronic Pain: A Prospective, Multicenter Clinical Trial. – Pain Medicine, Vol. 24, 2023, No 9, pp. 1100-1110.
  67. Nagireddi, J. N., A. K. Vyas, M. R. Sanapati, A. Soin, L. Manchikanti. The Analysis of Pain Research through the Lens of Artificial Intelligence and Machine Learning. – Pain Physician, Vol. 25, 2022, No 2, E211.
  68. Khan, O., J. H. Badhiwala, G. Grasso, M. G. Fehlings. Use of Machine Learning and Artificial Intelligence to Drive Personalized Medicine Approaches for Spine Care. – World Neurosurg, Vol. 140, 2020, pp. 512-518.
  69. Zhang, M., L. Zhu, S. Y. Lin, K. Herr, C. L. Chi, I. Demir, K. Dunn Lopez, N. C. Chi. Using Artificial Intelligence to Improve Pain Assessment and Pain Management: A Scoping Review. – Journal of the American Medical Informatics Association, Vol. 30, 2023, No 3, pp. 570-587.
  70. Rodriguez, P., G. Cucurull, J. Gonzàlez, J. M. Gonfaus, K. Nasrollahi, T. B. Moeslund, F. X. Roca. Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. – IEEE Transactions on Cybernetics, Vol. 52, 2017, No 5, pp. 3314-3324.
  71. Cohen, S. P., L. Vase, W. M. Hooten. Chronic Pain: An Update on Burden, Best Practices, and New Advances. – The Lancet, Vol. 397, 2021, No 10289, pp. 2082-2097.
  72. Li, H., J. T. Moon, V. Shankar, J. Newsome, J. Gichoya, Z. Bercu. Health Inequities, Bias, and Artificial Intelligence. – Techniques in Vascular and Interventional Radiology, Vol. 27, 2024, No 3, 100990.
  73. Patel, P. M., M. Green, J. Tram, E. Wang, M. Z. Murphy, A. Abd-Elsayed, K. Chakravarthy. Beyond the Pain Management Clinic: The Role of AI-Integrated Remote Patient Monitoring in Chronic Disease Management – A Narrative Review. – Journal of Pain Research, 31 December 2024, pp. 4223-4237.
  74. El-Tallawy, S. N., J. V. Pergolizzi, I. Vasiliu-Feltes, R. S. Ahmed, J. K. LeQuang, T. Alzahrani, G. Varrassi, F. I. Awaleh, A. T. Alsubaie, M. S. Nagiub. Innovative Applications of Telemedicine and Other Digital Health Solutions in Pain Management: A Literature Review. – Pain and Therapy, Vol. 13, 2024, No 4, pp. 791-812.
  75. Thiam, P., H. Hihn, D. A. Braun, H. A. Kestler, F. Schwenker. Multi-Modal Pain Intensity Assessment Based on Physiological Signals: A Deep Learning Perspective. – Frontiers in Physiology, Vol. 12, 2021, 720464.
  76. Phan, K. N., N. K. Iyortsuun, S. Pant, H. J. Yang, S. H. Kim. Pain Recognition with Physiological Signals Using Multi-Level Context Information. – IEEE Access, Vol. 11, 2023, pp. 20114-20127.
  77. Kumar, V. M. Discriminating the Infant Cry Sounds due to Pain vs Discomfort towards Assisted Clinical Diagnosis. – In: Proc. of 7th Workshop on Speech and Language Processing for Assistive Technologies (SLPAT’16), 2016.
  78. Bellmann, P., P. Thiam, H. A. Kestler, F. Schwenker. Machine Learning-Based Pain Intensity Estimation: Where Pattern Recognition Meets Chaos Theory – An Example Based on the Biovid Heat Pain Database. – IEEE Access, Vol. 10, 2022, pp. 102770-102777.
  79. Borna, S., C. R. Haider, K. C. Maita. A Review of Voice-Based Pain Detection in Adults Using Artificial Intelligence. – Bioengineering, Vol. 10, 2023, No 4, 500.
  80. Velez, J. C., L. E. Friedman, C. Barbosa, J. Castillo, D. L. Juvinao-Quintero, M. A. Williams, B. Gelaye. Evaluating the Performance of the Pain Interference Index and the Short Form McGill Pain Questionnaire among Chilean Injured Working Adults. – Plos one, Vol. 17, 2022, No 5, e0268672.
  81. El-Tallawy, S. N., R. S. Ahmed, M. S. Nagiub. Pain Management in the Most Vulnerable Intellectual Disability: A Review. – Pain and Therapy, Vol. 12, 2023, No 4, pp. 939-961.
  82. Ji, C., T. B. Mudiyanselage, Y. Gao, Y. Pan. A Review of Infant Cry Analysis and Classification. – EURASIP Journal on Audio, Speech, and Music Processing, Vol. 2021, 2021, No 1.
  83. Aqajari, S. A., R. Cao, E. Kasaeyan Naeini, M. D. Calderon, K. Zheng, N. Dutt, P. Liljeberg, S. Salanterä, A. M. Nelson, A. M. Rahmani. Pain Assessment Tool with Electrodermal Activity for Postoperative Patients: Method Validation Study. – JMIR mHealth and uHealth, Vol. 9, 2021, No 5, e25258.
  84. Segato, A., A. Marzullo, F. Calimeri, E. de Momi. Artificial Intelligence for Brain Diseases: A Systematic Review. – APL Bioengineering, Vol. 4, 2020, No 4.
  85. Thiam, P., H. Hihn, D. A. Braun, H. A. Kestler, F. Schwenker. Multi-Modal Pain Intensity Assessment Based on Physiological Signals: A Deep Learning Perspective. – Frontiers in Physiology, Vol. 12, 2021, 720464.
  86. Yu, S., W. Wu. Multimodal Non-Invasive Non-Pharmacological Therapies for Chronic Pain: Mechanisms and Progress. – BMC Medicine, Vol. 21, 2023, No 1, 372.
  87. Baron, R., A. Binder, G. Wasner. Neuropathic Pain: Diagnosis, Pathophysiological Mechanisms, and Treatment. – The Lancet Neurology, Vol. 9, 2010, No 8, pp. 807-819.
  88. Salama, V., B. Godinich, Y. Geng, L. Humbert-Vidan, L. Maule, K. A. Wahid, M. A. Naser, R. He, A. S. Mohamed, C. D. Fuller, A. C. Moreno. Artificial Intelligence and Machine Learning in Cancer Pain: A Systematic Review. – Journal of Pain and Symptom Management, 3 August 2024.
  89. Zamzmi, G., R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, Y. Sun. A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases. – IEEE Reviews in Biomedical Engineering, Vol. 11, 2017, pp. 77-96.
  90. Lammers, C. R., A. J. Schwinghammer, B. Hall, R. S. Kriss, D. A. Aizenberg, J. L. Funamura, C. W. Senders, V. Nittur, R. L. Applegate. Comparison of Oral Loading Dose to Intravenous Acetaminophen in Children for Analgesia after Tonsillectomy and Adenoidectomy: A Randomized Clinical Trial. – Anesthesia & Analgesia, Vol. 133, 2021, No 6, pp. 1568-1576.
  91. El-Tallawy, S. N., R. Nalamasu, G. I. Salem, J. A. LeQuang, J. V. Pergolizzi, P. J. Christo. Management of Musculoskeletal Pain: An Update with Emphasis on Chronic Musculoskeletal Pain. – Pain and Therapy, Vol. 10, 2021, pp. 181-209.
DOI: https://doi.org/10.2478/cait-2025-0039 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 166 - 192
Submitted on: Jun 20, 2025
Accepted on: Oct 22, 2025
Published on: Dec 11, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Wala’a N. Jasim, Adala Mahdi Chyad, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.