Have a personal or library account? Click to login
ALEX: Automated Low-Light Enhancement eXpert for Intelligent Security Systems Using Vision Transformer Cover

ALEX: Automated Low-Light Enhancement eXpert for Intelligent Security Systems Using Vision Transformer

Open Access
|Dec 2025

References

  1. Piza, E. L., B. C. Welsh, D. P. Farrington, A. L. Thomas. CCTV Surveillance for Crime Prevention: A 40-Year Systematic Review with Meta-Analysis. – Criminology and Public Policy, Vol. 18, 2019, No 1, pp. 135-159.
  2. Denise Cuevas, Q. P., J. P. Carlo Corachea, E. B. Escabel, M. A. Bautista. Lou Effectiveness of CCTV Cameras Installation in Crime Prevention. – College of Criminology Research Journal, Vol. 7, 2016.
  3. Sheela, A. J., S. Balaji, B. Balaji, U. Hemanth Kumar. A Survey on Crime Detection using CCTV Systems. – In: Proc. of 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA’23), 2023, pp. 254-261.
  4. Ghari, B., A. Tourani, A. Shahbahrami, G. Gaydadjiev. Pedestrian Detection in Low-Light Conditions: A Comprehensive Survey. – Image and Vision Computing, Vol. 148, 2024, 105106.
  5. Ai, S., J. Kwon. Extreme Low-Light Image Enhancement for Surveillance Cameras Using Attention U-Net. – Sensors (Switzerland), Vol. 20, 2020, No 2.
  6. Ronneberger, O., P. Fischer, T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. – In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, 2015, pp. 234-241.
  7. Qu, J., R. W. Liu, Y. Gao, Y. Guo, F. Zhu, F.-Y. Wang. Double Domain Guided Real-Time Low-Light Image Enhancement for Ultra-High-Definition Transportation Surveillance. – IEEE Transactions on Intelligent Transportation Systems, Vol. 25, 2024, No 8, pp. 9550-9562.
  8. Bhandari, A., A. Kafle, P. Dhakal, P. R. Joshi, D. B. Kshatri. Image Enhancement and Object Recognition for Night Vision Traffic Surveillance. – In: G. Ranganathan, X. Fernando, S. F., E. A. Y., Eds. Soft Computing for Security Applications. Springer Singapore, Singapore, 2022, pp. 733-748.
  9. Werdiningsih, I., I. Puspitasari, R. Hendradi. Recognizing Daily Activities of Children with Autism Spectrum Disorder Using Convolutional Neural Network Based on Image Enhancement. – Cybernetics and Information Technologies, Vol. 25, 2025, No 1, pp. 78-96.
  10. Jingchun, Z., G. Eg Su, M. Shahrizal Sunar. Low-Light Image Enhancement: A Comprehensive Review on Methods, Datasets, and Evaluation Metrics. – Journal of King Saud University – Computer and Information Sciences, 2024.
  11. Jiang, Y., X. Gong, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang, P. Zhou, Z. Wang. EnlightenGAN: Deep Light Enhancement Without Paired Supervision. – IEEE Transactions on Image Processing, Vol. 30, 2021, pp. 2340-2349.
  12. Wang, L., L. Zhao, T. Zhong, C. Wu. Low-Light Image Enhancement Using Generative Adversarial Networks. – Scientific Reports, Vol. 14, 2024, No 1.
  13. Lee, M. H., Y. H. Go, S. H. Lee, S. H. Lee. Low-Light Image Enhancement Using CycleGAN-Based Near-Infrared Image Generation and Fusion. – Mathematics, Vol. 12, 2024, No 24.
  14. Tian, Z., P. Qu, J. Li, Y. Sun, G. Li, Z. Liang, W. Zhang. A Survey of Deep Learning-Based Low-Light Image Enhancement. – Sensors, Vol. 23, 2023, No 18, pp. 1-22.
  15. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin. Attention is All You Need. – Advances in Neural Information Processing Systems, Vol. 2017-Decem, 2017, No Nips, pp. 5999-6009.
  16. Yan, Q., Y. Feng, C. Zhang, G. Pang, K. Shi, P. Wu, W. Dong, J. Sun, Y. Zhang. HVI: A New Color Space for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’25), IEEE, 2025, pp. 5678-5687.
  17. Darmawan, I., A. Rahmatulloh, R. Gunawan, R. Wahjoe Witjaksono, G. Fauzi Nugraha. ViTRA: Vision Transformer with Relative Position Embedding Attention for Low-Light Image Quality Improvement. – IEEE Access, Vol. 13, 2025, pp. 160588-160601.
  18. Shaw, P., J. Uszkoreit, A. Vaswani. Self-Attention with Relative Position Representations. – In: Proc. of NAACL HLT 2018 – 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies – Proceedings of the Conference, Vol. 2, 2018, pp. 464-468.
  19. Liang, J., J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte. SwinIR: Image Restoration Using Swin Transformer. – In: Proc. of IEEE/CVF International Conference on Computer Vision Workshops (ICCVW’21), IEEE, 2021, pp. 1833-1844.
  20. Chen, Z., K. Pawar, M. Ekanayake, C. Pain, S. Zhong, G. F. Egan. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging – State-of-the-Art and Challenges. – Journal of Digital Imaging, 2023, pp. 204-230.
  21. Liu, Z., Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. – In: Proc. of IEEE/CVF International Conference on Computer Vision (ICCV’21), IEEE, 2021, pp. 9992-10002.
  22. Wei, C., W. Wang, W. Yang, J. Liu. Deep Retinex Decomposition for Low-Light Enhancement. – In: Proc. of British Machine Vision Conference (BMVC’18). Vol. 2019. 2018, 61772043.
  23. Bogdanova, V. Image Enhancement Using Retinex Algorithms and Epitomic Representation. –Cybernetics and Information Technologies, Vol. 10, 2010, No 3, pp. 20-30.
  24. Yang, W., W. Wang, H. Huang, S. Wang, J. Liu. Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement. – IEEE Transactions on Image Processing, Vol. 30, 2021, pp. 2072-2086.
  25. Cai, J., S. Gu, L. Zhang. Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images. – IEEE Transactions on Image Processing, Vol. 27, 2018, No 4, pp. 2049-2062.
  26. Chen, C., Q. Chen, J. Xu, V. Koltun. Learning to See in the Dark. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018, pp. 3291-3300.
  27. Lee, C., C. Lee, C.-S. Kim. Contrast Enhancement Based on Layered Difference Representation of 2D Histograms. – IEEE Transactions on Image Processing, Vol. 22, 2013, No 12, pp. 5372-5384.
  28. Guo, X., Y. Li, H. Ling. LIME: Low-Light Image Enhancement via Illumination Map Estimation. – IEEE Transactions on Image Processing, Vol. 26, 2017, No 2, pp. 982-993.
  29. Ma, K., K. Zeng, Z. Wang. Perceptual Quality Assessment for Multi-Exposure Image Fusion. – IEEE Transactions on Image Processing, Vol. 24, 2015, No 11, pp. 3345-3356.
  30. Wang, S., J. Zheng, H. M. Hu, B. Li. Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images. – IEEE Transactions on Image Processing, Vol. 22, 2013, No 9, pp. 3538-3548.
  31. Vonikakis, V., R. Kouskouridas, A. Gasteratos. On the Evaluation of Illumination Compensation Algorithms. – Multimedia Tools and Applications, Vol. 77, 2018, No 8, pp. 9211-9231.
  32. Wang, Z., A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image Quality Assessment: from Error Visibility to Structural Similarity. – IEEE Transactions on Image Processing, Vol. 13, 2004, No 4, pp. 600-612.
  33. Liu, R., L. Ma, J. Zhang, X. Fan, Z. Luo. Retinex-Inspired Unrolling with Cooperative Prior Architecture Search for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’21), IEEE, 2021, pp. 10556-10565.
  34. Zhang, Y., J. Zhang, X. Guo. Kindling the Darkness. – In: Proc. of 27th ACM International Conference on Multimedia, ACM, New York, NY, USA, 2019, pp. 1632-1640.
  35. Guo, C., C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, R. Cong. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), IEEE, 2020, pp. 1777-1786.
  36. Zhang, R., P. Isola, A. A. Efros, E. Shechtman, O. Wang. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018, pp. 586-595.
  37. Mittal, A., A. K. Moorthy, A. C. Bovik. No-Reference Image Quality Assessment in the Spatial Domain. – IEEE Transactions on Image Processing, Vol. 21, 2012, No 12, pp. 4695-4708.
  38. Zeng, H., J. Cai, L. Li, Z. Cao, L. Zhang. Learning Image-Adaptive 3D Lookup Tables for High Performance Photo Enhancement in Real-Time. – IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2020, pp. 2058-2073.
  39. Yang, W., S. Wang, Y. Fang, Y. Wang, J. Liu. From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), IEEE, 2020, pp. 3060-3069.
  40. Liu, R., L. Ma, J. Zhang, X. Fan, Z. Luo. Retinex-Inspired Unrolling with Cooperative Prior Architecture Search for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’21), IEEE, 2021, pp. 10556-10565.
  41. Zamir, S. W., A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang. Restormer: Efficient Transformer for High-Resolution Image Restoration. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’22), IEEE, 2022, pp. 5718-5729.
  42. Zhou, S., C. Li, C. Change Loy. LEDNet: Joint Low-Light Enhancement and Deblurring in the Dark. – In: Lecture Notes in Computer Science Computer Vision. Springer, Nature, Switzerland, 2022, 573-589.
  43. Xu, X., R. Wang, C.-W. Fu, J. Jia. SNR-Aware Low-light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’22), IEEE, 2022, pp. 17693-17703.
  44. Fu, Z., Y. Yang, X. Tu, Y. Huang, X. Ding, K.-K. Ma. Learning a Simple Low-Light Image Enhancer from Paired Low-Light Instances. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’23), IEEE, 2023, pp. 22252-22261.
  45. Wang, Y., R. Wan, W. Yang, H. Li, L.-P. Chau, A. Kot. Low-Light Image Enhancement with Normalizing Flow. – In: Proc. of AAAI Conference on Artificial Intelligence, Vol. 36, 2022, No 3, pp. 2604-2612.
  46. Wang, T., K. Zhang, T. Shen, W. Luo, B. Stenger, T. Lu. Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and Transformer-Based Method. – Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, No 3, pp. 2654-2662.
  47. Cai, Y., H. Bian, J. Lin, H. Wang, R. Timofte, Y. Zhang. Retinexformer: One-Stage Retinex-Based Transformer for Low-light Image Enhancement. – In: Proc. of IEEE International Conference on Computer Vision, 2023, pp. 12470-12479.
  48. Cotogni, M., C. Cusano. TreEnhance: A Tree Search Method for Low-Light Image Enhancement. – Pattern Recognition, Vol. 136, 2023, 109249.
  49. Wen, Y., P. Xu, Z. Li, W. Xu. (ATO) An Illumination-Guided Dual Attention Vision Transformer for Low-Light Image Enhancement. – Pattern Recognition, Vol. 158, 2025.
  50. Pei, X., Y. Huang, W. Su, F. Zhu, Q. Liu. FFTFormer: A Spatial-Frequency Noise Aware CNN-Transformer for Low Light Image Enhancement. – Knowledge-Based Systems, Vol. 314, 2025.
  51. He, M., R. Wang, M. Zhang, F. Lv, Y. Wang, F. Zhou, X. Bian. SwinLightGAN: A Study of Low-Light Image Enhancement Algorithms Using Depth Residuals and Transformer Techniques. – Scientific Reports, Vol. 15, 2025, No 1.
  52. Reis, M. J. C. S. Low-Light Image Enhancement Using Deep Learning: A Lightweight Network with Synthetic and Benchmark Dataset Evaluation. – Applied Sciences (Switzerland), Vol. 15, 2025, No 11.
  53. Jiang, Y., J. Zhu, L. Li, H. Ma. A Joint Network for Low-Light Image Enhancement Based on Retinex. – Cognitive Computation, Vol. 16, 2024, No 6, pp. 3241-3259.
  54. Yin, M., J. Yang. ILR-Net: Low-Light Image Enhancement Network Based on the Combination of Iterative Learning Mechanism and Retinex Theory. – PLoS ONE, Vol. 20, 2025, No 2.
  55. Li, R.-K., M.-H. Li, S.-Q. Chen, Y.-T. Chen, Z.-H. Xu. Dark2Light: Multi-Stage Progressive Learning Model for Low-Light Image Enhancement. – Optics Express, Vol. 31, 2023, No 26, 42887.
  56. Zhang, W., H. Zhang, X. Liu, X. Guo, X. Wang, S. Li. Unsupervised Low-Light Image Enhancement Based on Explicit Denoising and Knowledge Distillation. – Computers, Materials and Continua, Vol. 82, 2025, No 2, pp. 2537-2554.
  57. Yan, Q., Y. Feng, C. Zhang, P. Wang, P. Wu, W. Dong, J. Sun, Y. Zhang. You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement. – arXiv Preprint arXiv 2402.05809, Vol. 2024, pp. 1-11.
  58. Cho, S.-J., S.-W. Ji, J.-P. Hong, S.-W. Jung, S.-J. Ko. Rethinking Coarse-to-Fine Approach in Single Image Deblurring. – In: Proc. of IEEE/CVF International Conference on Computer Vision (ICCV’21), IEEE, 2021, pp. 4621-4630.
  59. Mittal, A., R. Soundararajan, A. C. Bovik. Making a “Completely Blind” Image Quality Analyzer. – IEEE Signal Processing Letters, Vol. 20, 2013, No 3, pp. 209-212.
DOI: https://doi.org/10.2478/cait-2025-0038 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 145 - 165
Submitted on: Sep 6, 2025
Accepted on: Oct 28, 2025
Published on: Dec 11, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Alam Rahmatulloh, Erna Haerani, Rohmat Gunawan, Eryan Ahmad Firdaus, Ghatan Fauzi Nugraha, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.