References
- Piza, E. L., B. C. Welsh, D. P. Farrington, A. L. Thomas. CCTV Surveillance for Crime Prevention: A 40-Year Systematic Review with Meta-Analysis. – Criminology and Public Policy, Vol. 18, 2019, No 1, pp. 135-159.
- Denise Cuevas, Q. P., J. P. Carlo Corachea, E. B. Escabel, M. A. Bautista. Lou Effectiveness of CCTV Cameras Installation in Crime Prevention. – College of Criminology Research Journal, Vol. 7, 2016.
- Sheela, A. J., S. Balaji, B. Balaji, U. Hemanth Kumar. A Survey on Crime Detection using CCTV Systems. – In: Proc. of 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA’23), 2023, pp. 254-261.
- Ghari, B., A. Tourani, A. Shahbahrami, G. Gaydadjiev. Pedestrian Detection in Low-Light Conditions: A Comprehensive Survey. – Image and Vision Computing, Vol. 148, 2024, 105106.
- Ai, S., J. Kwon. Extreme Low-Light Image Enhancement for Surveillance Cameras Using Attention U-Net. – Sensors (Switzerland), Vol. 20, 2020, No 2.
- Ronneberger, O., P. Fischer, T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. – In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, 2015, pp. 234-241.
- Qu, J., R. W. Liu, Y. Gao, Y. Guo, F. Zhu, F.-Y. Wang. Double Domain Guided Real-Time Low-Light Image Enhancement for Ultra-High-Definition Transportation Surveillance. – IEEE Transactions on Intelligent Transportation Systems, Vol. 25, 2024, No 8, pp. 9550-9562.
- Bhandari, A., A. Kafle, P. Dhakal, P. R. Joshi, D. B. Kshatri. Image Enhancement and Object Recognition for Night Vision Traffic Surveillance. – In: G. Ranganathan, X. Fernando, S. F., E. A. Y., Eds. Soft Computing for Security Applications. Springer Singapore, Singapore, 2022, pp. 733-748.
- Werdiningsih, I., I. Puspitasari, R. Hendradi. Recognizing Daily Activities of Children with Autism Spectrum Disorder Using Convolutional Neural Network Based on Image Enhancement. – Cybernetics and Information Technologies, Vol. 25, 2025, No 1, pp. 78-96.
- Jingchun, Z., G. Eg Su, M. Shahrizal Sunar. Low-Light Image Enhancement: A Comprehensive Review on Methods, Datasets, and Evaluation Metrics. – Journal of King Saud University – Computer and Information Sciences, 2024.
- Jiang, Y., X. Gong, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang, P. Zhou, Z. Wang. EnlightenGAN: Deep Light Enhancement Without Paired Supervision. – IEEE Transactions on Image Processing, Vol. 30, 2021, pp. 2340-2349.
- Wang, L., L. Zhao, T. Zhong, C. Wu. Low-Light Image Enhancement Using Generative Adversarial Networks. – Scientific Reports, Vol. 14, 2024, No 1.
- Lee, M. H., Y. H. Go, S. H. Lee, S. H. Lee. Low-Light Image Enhancement Using CycleGAN-Based Near-Infrared Image Generation and Fusion. – Mathematics, Vol. 12, 2024, No 24.
- Tian, Z., P. Qu, J. Li, Y. Sun, G. Li, Z. Liang, W. Zhang. A Survey of Deep Learning-Based Low-Light Image Enhancement. – Sensors, Vol. 23, 2023, No 18, pp. 1-22.
- Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin. Attention is All You Need. – Advances in Neural Information Processing Systems, Vol. 2017-Decem, 2017, No Nips, pp. 5999-6009.
- Yan, Q., Y. Feng, C. Zhang, G. Pang, K. Shi, P. Wu, W. Dong, J. Sun, Y. Zhang. HVI: A New Color Space for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’25), IEEE, 2025, pp. 5678-5687.
- Darmawan, I., A. Rahmatulloh, R. Gunawan, R. Wahjoe Witjaksono, G. Fauzi Nugraha. ViTRA: Vision Transformer with Relative Position Embedding Attention for Low-Light Image Quality Improvement. – IEEE Access, Vol. 13, 2025, pp. 160588-160601.
- Shaw, P., J. Uszkoreit, A. Vaswani. Self-Attention with Relative Position Representations. – In: Proc. of NAACL HLT 2018 – 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies – Proceedings of the Conference, Vol. 2, 2018, pp. 464-468.
- Liang, J., J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte. SwinIR: Image Restoration Using Swin Transformer. – In: Proc. of IEEE/CVF International Conference on Computer Vision Workshops (ICCVW’21), IEEE, 2021, pp. 1833-1844.
- Chen, Z., K. Pawar, M. Ekanayake, C. Pain, S. Zhong, G. F. Egan. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging – State-of-the-Art and Challenges. – Journal of Digital Imaging, 2023, pp. 204-230.
- Liu, Z., Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. – In: Proc. of IEEE/CVF International Conference on Computer Vision (ICCV’21), IEEE, 2021, pp. 9992-10002.
- Wei, C., W. Wang, W. Yang, J. Liu. Deep Retinex Decomposition for Low-Light Enhancement. – In: Proc. of British Machine Vision Conference (BMVC’18). Vol. 2019. 2018, 61772043.
- Bogdanova, V. Image Enhancement Using Retinex Algorithms and Epitomic Representation. –Cybernetics and Information Technologies, Vol. 10, 2010, No 3, pp. 20-30.
- Yang, W., W. Wang, H. Huang, S. Wang, J. Liu. Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement. – IEEE Transactions on Image Processing, Vol. 30, 2021, pp. 2072-2086.
- Cai, J., S. Gu, L. Zhang. Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images. – IEEE Transactions on Image Processing, Vol. 27, 2018, No 4, pp. 2049-2062.
- Chen, C., Q. Chen, J. Xu, V. Koltun. Learning to See in the Dark. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018, pp. 3291-3300.
- Lee, C., C. Lee, C.-S. Kim. Contrast Enhancement Based on Layered Difference Representation of 2D Histograms. – IEEE Transactions on Image Processing, Vol. 22, 2013, No 12, pp. 5372-5384.
- Guo, X., Y. Li, H. Ling. LIME: Low-Light Image Enhancement via Illumination Map Estimation. – IEEE Transactions on Image Processing, Vol. 26, 2017, No 2, pp. 982-993.
- Ma, K., K. Zeng, Z. Wang. Perceptual Quality Assessment for Multi-Exposure Image Fusion. – IEEE Transactions on Image Processing, Vol. 24, 2015, No 11, pp. 3345-3356.
- Wang, S., J. Zheng, H. M. Hu, B. Li. Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images. – IEEE Transactions on Image Processing, Vol. 22, 2013, No 9, pp. 3538-3548.
- Vonikakis, V., R. Kouskouridas, A. Gasteratos. On the Evaluation of Illumination Compensation Algorithms. – Multimedia Tools and Applications, Vol. 77, 2018, No 8, pp. 9211-9231.
- Wang, Z., A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image Quality Assessment: from Error Visibility to Structural Similarity. – IEEE Transactions on Image Processing, Vol. 13, 2004, No 4, pp. 600-612.
- Liu, R., L. Ma, J. Zhang, X. Fan, Z. Luo. Retinex-Inspired Unrolling with Cooperative Prior Architecture Search for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’21), IEEE, 2021, pp. 10556-10565.
- Zhang, Y., J. Zhang, X. Guo. Kindling the Darkness. – In: Proc. of 27th ACM International Conference on Multimedia, ACM, New York, NY, USA, 2019, pp. 1632-1640.
- Guo, C., C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, R. Cong. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), IEEE, 2020, pp. 1777-1786.
- Zhang, R., P. Isola, A. A. Efros, E. Shechtman, O. Wang. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018, pp. 586-595.
- Mittal, A., A. K. Moorthy, A. C. Bovik. No-Reference Image Quality Assessment in the Spatial Domain. – IEEE Transactions on Image Processing, Vol. 21, 2012, No 12, pp. 4695-4708.
- Zeng, H., J. Cai, L. Li, Z. Cao, L. Zhang. Learning Image-Adaptive 3D Lookup Tables for High Performance Photo Enhancement in Real-Time. – IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2020, pp. 2058-2073.
- Yang, W., S. Wang, Y. Fang, Y. Wang, J. Liu. From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), IEEE, 2020, pp. 3060-3069.
- Liu, R., L. Ma, J. Zhang, X. Fan, Z. Luo. Retinex-Inspired Unrolling with Cooperative Prior Architecture Search for Low-Light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’21), IEEE, 2021, pp. 10556-10565.
- Zamir, S. W., A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang. Restormer: Efficient Transformer for High-Resolution Image Restoration. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’22), IEEE, 2022, pp. 5718-5729.
- Zhou, S., C. Li, C. Change Loy. LEDNet: Joint Low-Light Enhancement and Deblurring in the Dark. – In: Lecture Notes in Computer Science Computer Vision. Springer, Nature, Switzerland, 2022, 573-589.
- Xu, X., R. Wang, C.-W. Fu, J. Jia. SNR-Aware Low-light Image Enhancement. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’22), IEEE, 2022, pp. 17693-17703.
- Fu, Z., Y. Yang, X. Tu, Y. Huang, X. Ding, K.-K. Ma. Learning a Simple Low-Light Image Enhancer from Paired Low-Light Instances. – In: Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’23), IEEE, 2023, pp. 22252-22261.
- Wang, Y., R. Wan, W. Yang, H. Li, L.-P. Chau, A. Kot. Low-Light Image Enhancement with Normalizing Flow. – In: Proc. of AAAI Conference on Artificial Intelligence, Vol. 36, 2022, No 3, pp. 2604-2612.
- Wang, T., K. Zhang, T. Shen, W. Luo, B. Stenger, T. Lu. Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and Transformer-Based Method. – Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, No 3, pp. 2654-2662.
- Cai, Y., H. Bian, J. Lin, H. Wang, R. Timofte, Y. Zhang. Retinexformer: One-Stage Retinex-Based Transformer for Low-light Image Enhancement. – In: Proc. of IEEE International Conference on Computer Vision, 2023, pp. 12470-12479.
- Cotogni, M., C. Cusano. TreEnhance: A Tree Search Method for Low-Light Image Enhancement. – Pattern Recognition, Vol. 136, 2023, 109249.
- Wen, Y., P. Xu, Z. Li, W. Xu. (ATO) An Illumination-Guided Dual Attention Vision Transformer for Low-Light Image Enhancement. – Pattern Recognition, Vol. 158, 2025.
- Pei, X., Y. Huang, W. Su, F. Zhu, Q. Liu. FFTFormer: A Spatial-Frequency Noise Aware CNN-Transformer for Low Light Image Enhancement. – Knowledge-Based Systems, Vol. 314, 2025.
- He, M., R. Wang, M. Zhang, F. Lv, Y. Wang, F. Zhou, X. Bian. SwinLightGAN: A Study of Low-Light Image Enhancement Algorithms Using Depth Residuals and Transformer Techniques. – Scientific Reports, Vol. 15, 2025, No 1.
- Reis, M. J. C. S. Low-Light Image Enhancement Using Deep Learning: A Lightweight Network with Synthetic and Benchmark Dataset Evaluation. – Applied Sciences (Switzerland), Vol. 15, 2025, No 11.
- Jiang, Y., J. Zhu, L. Li, H. Ma. A Joint Network for Low-Light Image Enhancement Based on Retinex. – Cognitive Computation, Vol. 16, 2024, No 6, pp. 3241-3259.
- Yin, M., J. Yang. ILR-Net: Low-Light Image Enhancement Network Based on the Combination of Iterative Learning Mechanism and Retinex Theory. – PLoS ONE, Vol. 20, 2025, No 2.
- Li, R.-K., M.-H. Li, S.-Q. Chen, Y.-T. Chen, Z.-H. Xu. Dark2Light: Multi-Stage Progressive Learning Model for Low-Light Image Enhancement. – Optics Express, Vol. 31, 2023, No 26, 42887.
- Zhang, W., H. Zhang, X. Liu, X. Guo, X. Wang, S. Li. Unsupervised Low-Light Image Enhancement Based on Explicit Denoising and Knowledge Distillation. – Computers, Materials and Continua, Vol. 82, 2025, No 2, pp. 2537-2554.
- Yan, Q., Y. Feng, C. Zhang, P. Wang, P. Wu, W. Dong, J. Sun, Y. Zhang. You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement. – arXiv Preprint arXiv 2402.05809, Vol. 2024, pp. 1-11.
- Cho, S.-J., S.-W. Ji, J.-P. Hong, S.-W. Jung, S.-J. Ko. Rethinking Coarse-to-Fine Approach in Single Image Deblurring. – In: Proc. of IEEE/CVF International Conference on Computer Vision (ICCV’21), IEEE, 2021, pp. 4621-4630.
- Mittal, A., R. Soundararajan, A. C. Bovik. Making a “Completely Blind” Image Quality Analyzer. – IEEE Signal Processing Letters, Vol. 20, 2013, No 3, pp. 209-212.
