Have a personal or library account? Click to login
A Hybrid Multi-Swarm Particle Swarm Optimization Algorithm for Solving Agent-Based Epidemiological Model Cover

A Hybrid Multi-Swarm Particle Swarm Optimization Algorithm for Solving Agent-Based Epidemiological Model

Open Access
|Dec 2025

References

  1. Hamer, W. On Epidemic Disease in England – The Evidence of Variability and of Persistency of Type, Lecture III. – The Lancet, Vol. 167, 1906, No 4305, pp. 733-739.
  2. Kendall, D. G. Deterministic and Stochastic Epidemics in Closed Populations. – In: Proc. of 3rd Berkeley Symposium on Mathematical Statistics and Probability. Vol. IV. Contributions to Biology and Problems of Health. University of California Press, 1956, pp. 149-165.
  3. Campos, L. C., R. P. Cysne, A. L. Madureira, G. L. Q. Mendes. Multi-Generational SIR Modeling: Determination of Parameters, Epidemiological Forecasting, and Age-Dependent Vaccination Policies. – Infectious Disease Modelling, Vol. 6, 2021, pp. 751-765.
  4. Ciunkiewicz, P., W. Brooke, M. Rogers, S. Yanushkevich. Agent-Based Epidemiological Modeling of COVID-19 in Localized Environments. – Computers in Biology and Medicine, Vol. 144, 2022, Article No 105396.
  5. Kerkmann, D., S. Korf, K. Nguyen, D. Abele, A. Schengen, C. Gerstein, J. H. Göbbert, A. Basermann, M. J. Kühn, M. Meyer-Hermann. Agent-Based Modeling for Realistic Reproduction of Human Mobility and Contact Behavior to Evaluate Test and Isolation Strategies in Epidemic Infectious Disease Spread. – Computers in Biology and Medicine, Vol. 193, 2025, Article No 110269.
  6. Qiu, Z., Y. Sun, X. He, J. Wei, R. Zhou, J. Bai, S. Du. Application of Genetic Algorithm Combined with Improved SEIR Model in Predicting the Epidemic Trend of COVID-19, China. – Scientific Reports, Vol. 12, 2022, No 1, Article No 8910.
  7. Granados, B. G., M. C. G. Quintero, C. V. Núñez. Improved Genetic Algorithm Approach for Coordinating Decision-Making in Technological Disaster Management. – Neural Computing and Applications, Vol. 36, 2024, pp. 4503-4521.
  8. Haouari, M., M. Mhiri. A Particle Swarm Optimization Approach for Predicting the Number of COVID-19 Deaths. – Scientific Reports, Vol. 11, 2021, Article No 16587.
  9. Piotrowski, A. P., A. E. Piotrowska. Differential Evolution and Particle Swarm Optimization against COVID-19. – Artificial Intelligence Review, Vol. 55, 2022, pp. 2149-2219.
  10. Marzia, A., M. H. Sulaiman, A. J. Mohamad. Improved Barnacle Mating Optimizer-Based Least Squares Support Vector Machine to Predict COVID-19 Confirmed Cases with Total Vaccination. – Cybernetics and Information Technologies, Vol. 23, 2023, No 1, pp. 125-140.
  11. Didi, Y., A. Walha, A. Wali. Integrating Environmental Clustering to Enhance Epidemic Forecasting with Machine Learning Models. – International Journal of Cognitive Computing in Engineering, Vol. 6, 2025, pp. 628-642.
  12. Kennedy, J., R. Eberhart. Particle Swarm Optimization. – In: Proc. of IEEE International Conference on Neural Networks, Vol. 4, 1995, pp. 1942-1948.
  13. Akopov, A. S. A Clustering-Based Hybrid Particle Swarm Optimization Algorithm for Solving a Multisectoral Agent-Based Model. – Studies in Informatics and Control, Vol. 33, 2024, No 2, pp. 83-95.
  14. Smirnov, A. V. Method for Estimating Objective Function Landscape Convexity during Extremum Search. – Russian Technological Journal, Vol. 13, 2025, No 2, pp. 121-131.
  15. Herrera, F., M. Lozano, J. L. Verdega. Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis. – Artificial Intelligence Review, Vol. 12, 1998, No 4, pp. 265-319.
  16. Akopov, A. S., L. A. Beklaryan, M. Thakur, B. D. Verma. Parallel Multi-Agent Real-Coded Genetic Algorithm for Large-Scale Black-Box Single-Objective Optimization. – Knowledge-Based Systems, Vol. 174, 2019, pp. 103-122.
  17. Akopov, A. S., A. L. Beklaryan, A. A. Zhukova. Optimization of Characteristics for a Stochastic Agent-Based Model of Goods Exchange with the Use of a Parallel Hybrid Genetic Algorithm. – Cybernetics and Information Technologies, Vol. 20, 2023, No 3, pp. 45-63.
  18. Romasevych, Y., L. Viatcheslav, B. Ziv. Advanced PSO Algorithms Development with Combined LBEST and GBEST Neighborhood Topologies. – Cybernetics and Information Technologies, Vol. 24, 2024, No 3, pp. 59-77.
  19. Stoilov, T., K. Stoilova. Bi-Level Optimization of Inventory and Production. – Cybernetics and Information Technologies, Vol. 25, 2025, No 1, pp. 126-141.
  20. Audet, C., M. Kokkolaras. Blackbox and Derivative-Free Optimization: Theory, Algorithms and Applications. – Optimization and Engineering. Vol. 17, 2016, pp. 1-2.
  21. Borshchev, A. The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic. Hampton. NJ, AnyLogic North America, 2013.
  22. Liang, J. J., P. N. Suganthan. Dynamic Multi-Swarm Particle Swarm Optimizer. – In: Proc. of IEEE Swarm Intelligence Symposium (SIS’05), Pasadena, CA, USA, 2005, pp. 124-129.
  23. Mojena, R. Hierarchical Grouping Methods and Stopping Rules: An Evaluation. – The Computer Journal, Vol. 20, 1977, No 4, pp. 359-363.
  24. Li, X., A. Engelbrecht, M. G. Epitropakis. Benchmark Functions for CEC’2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization. – Technical Report, Evolutionary Computation and Machine Learning Group, RMIT University, Australia, 2013.
DOI: https://doi.org/10.2478/cait-2025-0033 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 59 - 77
Submitted on: Aug 14, 2025
Accepted on: Oct 11, 2025
Published on: Dec 11, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Andranik S. Akopov, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.