Have a personal or library account? Click to login
Passive Localization Utilizing Wireless RSSI: A Review Cover

References

  1. Zhang, M., S. Zhang, J. Cao. Fusing Received Signal Strength from Multiple Access Points for WLAN User Location Estimation. – In: Proc. of International Conference on Internet Computing in Science and Engineering, 2008, pp 173-180.
  2. Fouskas, K., et al. On the Potential Use of Mobile Positioning Technologies in Indoor Environments. – Proc. BLED, Vol. 2002, 2002, pp. 33.
  3. Zafari, F., A. Gkelias, K. K. Leung. A Survey of Indoor Localization Systems and Technologies. – IEEE Communications Surveys & Tutorials, Vol. 21, 2019, No 3, pp. 2568-2599.
  4. Brena, R. F., et al. Evolution of Indoor Positioning Technologies: A Survey. – Journal of Sensors, Vol. 2017, 2017.
  5. Matsuda, T., et al. Binary Radio Tomographic Imaging in Factory Environments Based on LOS/NLOS Identification. – IEEE Access, Vol. 11, 2023, pp. 22418-22429.
  6. Wang, Q., et al. Localizing Multiple Objects Using Radio Tomographic Imaging Technology. – IEEE Transactions on Vehicular Technology, Vol. 65, 2016, No 5, pp. 3641-3656.
  7. Stojanovic, D., N. Stojanovic. Indoor Localization and Tracking: Methods, Technologies, and Research Challenges. – Facta Universitatis, Series: Automatic Control and Robotics. Vol. 13, 2014, No 1, pp. 57-72.
  8. Oguntala, G., et al. Indoor Location Identification Technologies for Real-Time IoT-Based Applications: An Inclusive Survey. – Computer Science Review, Vol. 30, 2018, pp. 55-79.
  9. Zheng, J., K. Li, X. Zhang. Wi-Fi Fingerprint-Based Indoor Localization Method via Standard Particle Swarm Optimization. – Sensors, Vol. 22, 2022, pp. 13.
  10. Liu, M., et al. Indoor Acoustic Localization: A Survey. – Hum. Cent. Comput. Inf. Sci., Vol. 10, 2020, pp. 2.
  11. Rathna, R. Simple Clustering for Wireless Sensor Networks. – Cybernetics and Information Technologies, Vol. 16, 2016, No 1, pp. 57-72.
  12. Yigitler, J., et al. Detector-Based Radio Tomographic Imaging. – IEEE Transactions on Mobile Computing, Vol. 17, 2017, No 1, pp. 58-71.
  13. Farid, Z., R. Nordin, M. Ismail. Recent Advances in Wireless Indoor Localization Techniques and Systems. – Journal of Computer Networks and Communications, Vol. 2013, 2013.
  14. Anderson, C. R., et al. Radio Tomography for Roadside Surveillance. – IEEE Journal of Selected Topics in Signal Processing, Vol. 8, 2013, No 1, pp. 66-79.
  15. Cao, Z., et al. Generative Model-Based Attenuation Image Recovery for Device-Free Localization with Radio Tomographic Imaging. – Pervasive and Mobile Computing, Vol. 66, 2020, 101205.
  16. Yu, C. Low-Cost Locating Method of Wireless Sensor Network in Precision Agriculture. – Cybernetics and Information Technologies, Vol. 16, 2016, No 6, pp. 123-132.
  17. Yang, X., W. Zhang. An Improved DV-Hop Localization Algorithm Based on the Bat Algorithm. – Cybernetics and Information Technologies, Vol. 16, 2016, No 1, pp. 89-98.
  18. Anusha, K. S., R. Ramanathan, M. Jayakumar. Device-Free Localisation Techniques in Indoor Environments. – Defence Science Journal, Vol. 69, 2019, No 4, pp. 378-388.
  19. Chen, Z, Q. Zhu, Y. C. Soh. Smartphone Inertial Sensor-Based Indoor Localization and Tracking with iBeacon Corrections. – IEEE Transactions on Industrial Informatics, Vol. 12, 2016, No 4, pp. 1540-1549.
  20. Ganz, A., et al. INSIGHT: RFID and Bluetooth-Enabled Automated Space for the Blind and Visually Impaired. – In: Proc. of 2010 Annual International Conf. of the IEEE Engineering in Medicine and Biology (RFID’10), 2010.
  21. Lee, S., et al. Range-Free Indoor Positioning System Using Smartphone with Bluetooth Capability. – In: Proc. of 2014 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5-8 May 2014, pp. 657-662.
  22. Brabyn, L. A., J. A. Brabyn. An Evaluation of Talking Signs for the Blind. – Human Factors, Vol. 25, 1983, No 1, pp. 49-53. (PubMed., Vol. 6840772).
  23. Liu, Y., J. C. Saldaña, F. J. Martínez. Active WiFi Fingerprinting for Indoor Positioning Using Multiple Robots. – IEEE Transactions on Mobile Computing, Vol. 15, 2016, No 10, pp. 2581-2595.
  24. Chen, Y., et al. Enhancing WiFi Fingerprinting for Indoor Positioning Using Human Activity Recognition. – IEEE Transactions on Vehicular Technology, Vol. 63, 2014, No 6, pp. 2845-2856.
  25. Wang, Y., et al. WiFi Indoor Localization with CSI Fingerprinting-Based Random Forest. – Sensors, Vol. 18, 2018, pp. 9.
  26. Deese, A. S., J. Daum. Application of ZigBee-Based Internet of Things Technology to Demand Response in Smart Grids. – IFAC-PapersOnLine, Vol. 51, 2018, No 28, pp. 43-48.
  27. Dhillon, P., H. Sadawarti. A Review Paper on Zigbee (IEEE 802.15.4) Standard. – International Journal of Engineering Research and Technology, Vol. 3, 2014.
  28. Qian, X., et al. Active RFID-Based Indoor Positioning System Using Bayesian Decision Theory. – International Journal of Distributed Sensor Networks, Vol. 9, 2013, No 5, 871648.
  29. Banerjee, N., V. Srinivasan. RF Sensor Networks for Localizing and Tracking Stationary and Mobile Targets. – IEEE Transactions on Mobile Computing, Vol. 9, 2010, No 12, pp. 1762-1775.
  30. Ni, L. M., et al. LANDMARC: Indoor Location Sensing Using Active RFID. – Wireless Networks, Vol. 10, 2004, No 6, pp. 701-710.
  31. Hou, Z.-G., L. Fang, Y. Yi. An Improved Indoor UHF RFID Localization Method Based on Deviation Correction. – In: Proc. of 4th International Conference on Information Science and Control Engineering (ICISCE’17), Changsha, China, 21-25 July 2017, pp. 1402-1405.
  32. Ouyang, G., K. Abed-Meraim. A Survey of Magnetic-Field-Based Indoor Localization. – Electronics, Vol. 11, 2022, 6.
  33. Subbu, K. P., B. Gozick, R. Dantu. LocateMe: Magnetic-Fields-Based Indoor Localization Using Smartphones. – ACM Transactions on Intelligent Systems and Technology (TIST’13), Vol. 4, 2013, No 4, pp. 1-27.
  34. Gozick, B., et al. Magnetic Maps for Indoor Navigation. – IEEE Transactions on Instrumentation and Measurement, Vol. 60, 2011, No 12, pp. 3883-3891.
  35. Lee, N., S. Ahn, D. Han. AMID: Accurate Magnetic Indoor Localization Using Deep Learning. – Sensors, Vol. 18, 2018, 5.
  36. Hehn, M., et al. High-Accuracy Localization and Calibration for 5-DoF Indoor Magnetic Positioning Systems. – IEEE Trans. Instrum. Meas., Vol. 68, 2019, pp. 4135-4145.
  37. Li, X., K. Pahlavan. Super-Resolution TOA Estimation with Diversity for Indoor Geolocation. – IEEE Transactions on Wireless Communications, Vol. 3, 2004, No 1, pp. 224-234.
  38. Mailaender, L. Comparing Geo-Location Bounds for TOA, TDOA, and Round-Trip TOA. – In: Proc. of 18th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2007.
  39. Salas, C., I. Agustín. Positioning System Based on Bluetooth Low Energy. BS Thesis. Universitat Politècnica de Catalunya, 2014.
  40. Konings, D., et al. Device-Free Localization Systems Utilizing Wireless RSSI: A Comparative Practical Investigation. – IEEE Sensors Journal, Vol. 19, 2019, No 7, pp. 2747-2757.
  41. Hossain, F., et al. Indoor 3-D RT RadioWave Propagation Prediction Method: PL and RSSI Modeling Validation by Measurement at 4.5 GHz. – Electronics, Vol. 8, 2019, 750.
  42. Ma, Y., et al. PRSRTI: A Novel Device-Free Localization Method Using Phase Response Shift-Based Radio Tomography Imaging. – IEEE Transactions on Vehicular Technology, Vol. 69, 2020, No 11, pp. 13812-13820.
  43. Zhang, D., et al. RSSI-Based Indoor Localization and Tracking Using Sigma-Point Kalman Smoothers. – IEEE Transactions on Vehicular Technology, Vol. 61, 2012, No 1, pp. 399-412.
  44. Qi, Y., et al. An RSSI-Based Localization Algorithm with Dynamic Path Loss Exponent Estimation for Wireless Sensor Networks. – Sensors, Vol. 15, 2015, No 9, pp. 22175-22195.
  45. Chuku, N., A. Nasipuri. RSSI-Based Localization Schemes for Wireless Sensor Networks Using Outlier Detection. – Journal of Sensor and Actuator Networks, Vol. 10, 2021, 1.
  46. Hossain, F., et al. An Efficient 3-D Ray Tracing Method: Prediction of Indoor Radio Propagation at 28 GHz in 5G Network. – Electron, Vol. 8, 2019, 286.
  47. Hamzeh, O., A. Elnagar. A Kinect-Based Indoor Mobile Robot Localization. – In: Proc. of 10th International Symposium on Mechatronics and Its Applications (ISMA’15), IEEE, 2015.
  48. Patra, A., et al. Experimental Evaluation of Radio Tomographic Imaging Algorithms for Indoor Localization with Wi-Fi. – In: Proc. of IEEE Global Communications Conference (GLOBECOM’17), IEEE, 2017.
  49. Denis, S., et al. Multi-Frequency Sub-1 GHz Radio Tomographic Imaging in a Complex Indoor Environment. – In: Proc. of International Conference on Indoor Positioning and Indoor Navigation (IPIN’17), IEEE, 2017.
  50. Fei, H., et al. Motion Path Reconstruction in Indoor Environment Using Commodity Wi-Fi. – IEEE Trans. Veh. Technol., Vol. 68, 2019, pp. 7668-7678.
  51. Rusli, M. E., et al. An Improved Indoor Positioning Algorithm Based on RSSI-Trilateration Technique for Internet of Things (IOT). – In: Proc. of International Conference on Computer and Communication Engineering (ICCCE’16), Kuala Lumpur, Malaysia, 26-27 July 2016, pp. 72-77.
  52. Xu, L., et al. Variation of Received Signal Strength in Wireless Sensor Network. – In: Proc. of 3rd International Conference on Advanced Computer Control, IEEE, 2011.
  53. Bahl, P., P. N. Venkata. RADAR: An In-Building RF-Based User Location and Tracking System. – In: Proc. of 9th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM’2000) Conference on Computer Communications (Cat. No 00CH37064), IEEE, Vol. 2, 2000.
  54. Gezici, S. A Survey on Wireless Position Estimation. – Wireless Personal Communications, Vol. 44, 2008, pp. 263-282.
  55. Niculescu, D., B. Nath. Ad hoc Positioning System (APS) Using AOA. – In: Proc. of 22nd Annual Joint Conference of the IEEE Computer and Communications Societies IEEE (INFOCOM’03), (IEEE Cat. No 03CH37428), 2003, pp. 1734-1743.
  56. Ahuja, S., P. Potti, et al. An Introduction to RFID Technology. – Commun. Netw., Vol. 2, 2010, No 3, pp. 183-186.
  57. Centenaro, M., et al. Long-Range Communications in Unlicensed Bands: The Rising Stars in the IoT and Smart City Scenarios. – IEEE Wireless Communications, Vol. 23, 2016, No 5, pp. 60-67.
  58. Wilson, J., N. Patwari. Radio Tomographic Imaging with Wireless Networks. – IEEE Transactions on Mobile Computing, Vol. 9, 2010, No 5, pp. 621-632.
  59. Romero, D., D. Lee, G. B. Giannakis. Blind Radio Tomography. – IEEE Transactions on Signal Processing, Vol. 66, 2018, No 8, pp. 2055-2069.
  60. Zhao, Y., N. Patwari. Robust Estimators for Variance-Based Device-Free Localization and Tracking. – IEEE Transactions on Mobile Computing, Vol. 14, 2014, No 10, pp. 2116-2129.
  61. Moussa, M., M. Youssef. Smart Cevices for Smart Environments: Device-Free Passive Detection in Real Environments. – In: Proc. of IEEE International Conference on Pervasive Computing and Communications, 2009, pp. 1-6.
  62. Patwari, N., S. Kasera. Robust Location Distinction Using Temporal Link Signatures. 2015.
  63. Wu, H., et al. Attention-Based Bidirectional Convolutional LSTM for High-Resolution Radio Tomographic Imaging. – IEEE Transactions on Circuits and Systems, Vol. 68, 2020, No 4, pp. 1482-1486.
  64. Wu, H., X. Ma, S. Liu. Designing a Multi-Task Convolutional Vibrational Autoencoder for Radio Tomographic Imaging. – IEEE Transactions on Circuits and Systems, Vol. 69, 2021, No 1, pp. 219-223.
  65. Ngamakeur, K., et al. Passive Infrared Sensor Dataset and Deep Learning Models for Device-Free Indoor Localization and Tracking. – Pervasive and Mobile Computing, Vol. 88, 2022, 101721.
  66. Faulkner, N., et al. Machine Learning Techniques for Device-Free Localization Using Low-Resolution Thermopiles. – IEEE Internet of Things Journal, Vol. 9, 2022, No 19, pp. 18681-18694.
  67. Xiao, J., et al. A Survey on Wireless Indoor Localization from the Device Perspective. – ACM Comput. Surveys, Vol. 49, No 2, pp. 1-31.
  68. Qasem, S. A., et al. Design and Analysis of Wideband Dielectric Resonator Antenna with Bandwidth and Gain Enhancement for C-Band Applications. – Int. Rev. Model. Simul. (IREMOS), Vol. 11, 2018, pp. 352.
  69. Billa, A., et al. An Overview of Indoor Localization Technologies: Toward IoT Navigation Services. – In: Proc. of 5th IEEE International Symposium on Telecommunication Technologies (ISTT’20), IEEE, 2020.
  70. Yang, J., et al. A Device-Free Localization and Size Prediction System for Road Vehicle Surveillance via UWB Networks. – IEEE Transactions on Instrumentation and Measurement, Vol. 71, 2021, pp. 1-11.
  71. Liu, Z., et al. Fusion of Magnetic and Visual Sensors for Indoor Localization: Infrastructure-Free and More Effective. – IEEE Transactions on Multimedia, Vol. 19, 2016, No 4, pp. 874-888.
  72. He, T., et al. Range-Free Localization Schemes for Large-Scale Sensor Networks. – In: Proc. of 9th Annual International Conference on Mobile Computing and Networking, 2003.
  73. Cheung, K. C., S. S. Intille, K. Larson. An Inexpensive Bluetooth-Based Indoor Positioning Hack. – In: Proc. of UbiComp, 2006.
  74. Pasku, V., et al. Magnetic Ranging-Aided Dead-Reckoning Positioning System for Pedestrian Applications. – IEEE Trans. Instrum. Meas., Vol. 66, 2017, pp. 953-963.
  75. Roos, T., P. Myllymäki, H. Tirri. A Statistical Modeling Approach to Location Estimation. – IEEE Transactions on Mobile Computing, Vol. 2, 2003, No 4, pp. 243-257.
  76. Saeed, A., A. E. Kosba, M. Youssef. ICHNAEA: A Low-Overhead Robust WLAN Device-Free Passive Localization System. – IEEE Journal of Selected Topics in Signal Processing, Vol. 8, 2014, No 1, pp. 5-15.
  77. Sen, S., C. M. Chen, D. B. Johnson. SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength. – In: Proc. of 7th Annual International Conference on Mobile Computing and Networking (MobiCom’01), 2001, pp. 201-212.
  78. Davidson, P., R. Piche. A Survey of Selected Indoor Positioning Methods for Smartphones. – IEEE Communications Surveys & Tutorials, Vol. 19, 2016, No 2, pp. 1347-1370.
  79. Wu, X., et al. iBILL: Using iBeacon and Inertial Sensors for Accurate Indoor Localization in Large Open Areas. – IEEE Access, Vol. 5, 2017., pp. 14589-14599.
  80. Sneha, V., M. Nagarajan. Localization in Wireless Sensor Networks: A Review. – Cybernetics and Information Technologies, Vol. 20, 2020, No 4, pp. 3-26.
  81. He, Z., X. Ma. Improving Radio Tomographic Imaging Accuracy by Attention Augmented Optimization Technique. – IEEE Signal Processing Letters, Vol. 29, 2022, pp. 2323-2327.
  82. Fusco, G., M. J. Coughlan. Indoor Localization Using Computer Vision and Visual-Inertial Odometry. – In: Proc. of 16th International Conference Computers Helping People with Special Needs (ICCHP’18), Linz, Austria, 11-13 July 2018, Part II 16, 2018.
  83. Jung, S.-Y., S. Hann, C.-S. Park. TDOA-Based Optical Wireless Indoor Localization Using LED Ceiling Lamps. – IEEE Transactions on Consumer Electronics, Vol. 57, 2011, No 4, pp. 1592-1597.
  84. Rodrigues, B., et al. BluePIL: A Bluetooth-Based Passive Localization Method. – In: Proc. of IFIP/IEEE Int. Symp. Integr. Netw. Manag (IM’21), 2021, pp. 28-36.
  85. Hsiao, C.-C., P. Huang. Two Practical Considerations of Beacon Deployment for Ultrasound-Based Indoor Localization Systems. – In: Proc. of IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’08), IEEE, 2008.
  86. Pasku, V., et al. Magnetic Field-Based Positioning Systems. – IEEE Communications Surveys & Tutorials, Vol. 19, 2017, No 3, pp. 2003-2017.
  87. Shi, G., Y. Ming. Survey of Indoor Positioning Systems Based on Ultra-Wideband (UWB) Technology. – In: Proc. of Wireless Communications, Networking and Applications: WCNA 2014, 2016, pp. 1269-1278.
  88. Smailagic, A., D. Kogan. Location Sensing and Privacy in a Context-Aware Computing Environment. – IEEE Wireless Communications, Vol. 9, 2002, No 5, pp. 10-17.
  89. Jadaliha, M., et al. Gaussian Process Regression for Sensor Networks Under Localization Uncertainty. – IEEE Transactions on Signal Processing, Vol. 61, 2013, No 2, pp. 223-237.
  90. Anusha, K. S., R. Ramanathan, M. Jayakumar. Link Distance-Support Vector Regression (LD-SVR) Based Device-Free Localization Technique in Indoor Environment. – Engineering Science and Technology, an International Journal, Vol. 23, 2020, No 3, pp. 483-493.
  91. Chen, H., et al. A WiFi Indoor Localization Method Based on Dilated CNN and Support Vector Regression. – In: Proc. of Chinese Automation Congress (CAC’20), IEEE, 2020.
  92. Zhou, R., et al. FreeTrack: Device-Free Human Tracking with Deep Neural Networks and Particle Filtering. – IEEE Systems Journal, Vol. 14, 2019, No 2, pp. 2990-3000.
  93. Seeger, M. Gaussian Processes for Machine Learning. – International Journal of Neural Systems, Vol. 14, 2004, No 2, pp. 69-106.
  94. Jakkula, V. Tutorial on Support Vector Machine (SVM). – School of EECS, Washington State University, Vol. 37, 2006, No 2.5, 3.
  95. Sarkar, P. Sequential Monte Carlo Methods in Practice. 2003.
  96. Xu, S., et al. Compressive Sensing-Based Radio Tomographic. 2019.
  97. Wu, H., et al. Convolutional Neural Network-Based Radio Tomographic Imaging. – In: Proc. of 54th Annual Conference on Information Sciences and Systems (CISS’20), IEEE, 2020.
  98. Denis, S., et al. Device-Free Localization and Identification Using Sub-GHz Passive Radio Mapping. – Applied Sciences, Vol. 10, 2020, No 18, 6183.
  99. Rampa, V., et al. Electromagnetic Models for Passive Detection and Localization of Multiple Bodies. – IEEE Transactions on Antennas and Propagation, Vol. 70, 2021, No 2, pp. 1462-1475.
  100. Wang, B., Y. Ma, X. Liang. Gradient Iteration Regularization to Solve Radio Tomographic Imaging Model in UHF RFID Scenarios, 2024.
  101. Styla, M., B. Kiczek, P. Adamkiewicz. Image Reconstruction Using Radio Tomography and Artificial Intelligence in Tracking and Navigation Systems for Indoor Applications, 2024.
  102. Fernandes, T. Indoor Localization Using Bluetooth. – In: Proc. of 6th Dr. Symp. Informatics Eng., Vol. 10, 2011, 1.
  103. Xun, W., et al. Depthwise Separable Convolution-Based Passive Indoor Localization Using CSI Fingerprint. – IEEE Wireless Communications and Networking Conference, WCNC, Vol. 2020-May, 2020.
  104. Wang, J., et al. Deep Learning for Sensor-Based Activity Recognition: A Survey. – Pattern Recognition Letters, Vol. 119, 2019, pp. 3-11.
  105. Murad, A., J.-Y. Pyun. Deep Recurrent Neural Networks for Human Activity Recognition. – Sensors, Vol. 17, 2017, No 11, 2556.
  106. Cai, C., et al. PILC: Passive Indoor Localization Based on Convolutional Neural Networks. – In: Proc. of 5th IEEE Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS’18), 2018, pp. 1-6.
  107. Roy, P., C. Chowdhury. A Survey of Machine Learning Techniques for Indoor Localization and Navigation Systems. – Journal of Intelligent & Robotic Systems, Vol. 101, 2021, No 3, 63.
  108. Bai, J., et al. Wi-Fi Fingerprint-Based Indoor Mobile User Localization Using Deep Learning. – Wireless Communications and Mobile Computing, Vol. 2021, 2021, No 1, 6660990.
  109. Torres-Sospedra, J., et al. Comprehensive Analysis of Distance and Similarity Measures for Wi-Fi Fingerprinting Indoor Positioning Systems. – Expert Systems with Applications, Vol. 42, 2015, No 23, pp. 9263-9278.
  110. Zhao, W., et al. A Testbed of Performance Evaluation for Fingerprint-Based WLAN Positioning System. – KSII Transactions on Internet & Information Systems, Vol. 10, 2016, No 6.
  111. Sakib, M. S. R., et al. Improving Wi-Fi-Based Indoor Positioning Using Particle Filter Based on Signal Strength. – In: Proc. of IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP’14), 2014, pp. 1-6.
  112. Alzantot, M., M. Youssef. Crowdinside: Automatic Construction of Indoor Floorplans. – In: Proc. of 20th International Conference on Advances in Geographic Information Systems, 2012, pp. 99-108.
  113. He, S., S. Chan, H. Gary. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons. – IEEE Communications Surveys & Tutorials, Vol. 18, 2015, No 1, pp. 466-490.
DOI: https://doi.org/10.2478/cait-2025-0031 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 20 - 49
Submitted on: Apr 25, 2025
Accepted on: Sep 24, 2025
Published on: Dec 11, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Muhammad Jabbar, Umar Shoaib, Saliha Zahoor, Shehzad Ashraf Chaudhry, Muhammad Nasir Mumtaz Bhutta, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.