Have a personal or library account? Click to login

Cybersecurity and Artificial Intelligence: Triad-Based Analysis and Attacks Review

Open Access
|Sep 2025

References

  1. The Bletchley Declaration by Countries Attending the AI Safety Summit. 2023 (Accessed on 18.07.2024). https://www.gov.uk/government/publications/ai-safety-summit-2023-the-bletchley-declaration/the-bletchley-declaration-by-countries-attending-the-ai-safety-summit-1-2-november-2023/
  2. Veprytska, O., V. Kharchenko. Extended IMECA Technique for Assessing Risks of Successful Cyberattacks. – In: Proc. of 13th International Conference on Dependable Systems, Services and Technologies (DESSERT’23), 2023, pp. 1-7. DOI: 10.1109/DESSERT61349.2023.10416447.1626.
  3. Hoque, N., D. K. Bhattacharyya, J. K. Kalita. Botnet in DDoS Attacks: Trends and Challenges. – IEEE Communications Surveys & Tutorials, Vol. 17, 2015, pp. 2242-2270. DOI: 10.1109/comst.2015.2457491.
  4. Xing, Y., H. Shu, H. Zhao, D. Li, L. Guo. Survey on Botnet Detection Techniques: Classification, Methods, and Evaluation. – Mathematical Problems in Engineering, Vol. 2021, 2021, 6640499. DOI: 10.1155/2021/6640499.
  5. Somani, G., M. S. Gaur, D. Sanghi, M. Conti, R. Buyya. DDoS Attacks in Cloud Computing: Issues, Taxonomy, and Future Directions. – Computer Communications, Vol. 107, 2017, pp. 30-48. DOI: 10.1016/j.comcom.2017.03.010.
  6. Vishwakarma, R., A. K. Jain. A Survey of DDoS Attacking Techniques and Defence Mechanisms in the IoT Network. – Telecommunication Systems, Vol. 73, 2020, pp. 3-25. DOI: 10.1007/s11235-019-00599-z.
  7. Bhardwaj, A., V. Mangat, R. Vig, S. Halder, M. Conti. Distributed Denial of Service Attacks in Cloud: S tate-of-the-Art of Scientific and Commercial Solutions. – Computer Science Review, Vol. 39, 2021, 100332. DOI: 10.1016/j.cosrev.2020.100332.
  8. Jaafar, G. A., S. M. Abdullah, S. Ismail. Review of Recent Detection Methods for HTTP DDoS Attack. – Journal of Computer Networks and Communications, Vol. 2019, 2019, 1283472. DOI: 10.1155/2019/1283472.
  9. Singh, A., B. B. Gupta. Distributed Denial-of-Service (DDoS) Attacks and Defence Mechanisms in Various Web-Enabled Computing Platforms: Issues, Challenges, and Future Research Directions. – International Journal on Semantic Web and Information Systems (IJSWIS), Vol. 18, 2022, pp. 1-43. DOI: 10.4018/ijswis.297143.
  10. Dhadhal, H., P. Kotak. Leveraging Datasets for Effective Mitigation of DDoS Attacks in Software-Defined Networking: Significance and Challenges. – Radioelectronic and Computer Systems, 2024, No 2, pp. 136-146. DOI: 10.32620/reks.2024.2.11.
  11. Mittal, M., K. Kumar, S. Behal. Deep Learning Approaches for Detecting DDoS Attacks: A Systematic Review. – Soft Computing, Vol. 27, 2023, pp. 13039-13075. DOI: 10.1007/s00500-021-06608-1.
  12. Sood, A. K., S. Zeadally. A Taxonomy of Domain-Generation Algorithms. – IEEE Security & Privacy, Vol. 14, 2016, pp. 46-53. DOI: 10.1109/msp.2016.76.
  13. Charan, P. S., S. K. Shukla, P. M. Anand. Detecting Word Based DGA Domains Using Ensemble Models. – In: Proc. of 19th International Conference of Cryptology and Network Security (CANS’20), Vienna, Austria, 14-16 December 2020, Proceedings, 19. Springer, 2020, pp. 127-143. DOI: 10.1007/978-3-030-65411-5_7.
  14. Mao, J., J. Zhang, Z. Tang, Z. Gu. DNS Anti-Attack Machine Learning Model for DGA Domain Name Detection. – Physical Communication, Vol. 40, 2020, 101069. DOI: 10.1016/j.phycom.2020.101069.
  15. Chiscop, I., F. Soro, P. Smith. AI-Based Detection of DNS Misuse for Network Security. – In: Proc. of 1st International Workshop on Native Network Intelligence, 2022, pp. 27-32. DOI: 10.1145/3565009.3569523.
  16. Shu, K., A. Sliva, S. Wang, J. Tang, H. Liu. Fake News Detection on Social Media: A Data Mining Perspective. – ACM SIGKDD Explorations Newsletter, Vol. 19, 2017, pp. 22-36. DOI: 10.1145/3137597.3137600.
  17. Padalko, H., V. Chomko, S. Yakovlev, D. Chumachenko. Ensemble Machine Learning Approaches for Fake News Classification. – Radioelectronic and Computer Systems, 2023, No 4, pp. 5-19. DOI: 10.32620/reks.2023.4.01.
  18. Zhang, X., A. A. Ghorbani. An Overview of Online Fake News: Characterization, Detection, and Discussion. – Information Processing & Management, Vol. 57, 2020, 102025. DOI: 10.1016/j.ipm.2019.03.004.
  19. Zhou, X., R. Zafarani. A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities. – ACM Computing Surveys (CSUR), Vol. 53, 2020, pp. 1-40. DOI: 10.1145/3395046.
  20. Tandoc Jr, E. C., Z. W. Lim, R. Ling. Defining “Fake News” A Typology of Scholarly Definitions. – Digital Journalism, Vol. 6, 2018, pp. 137-153. DOI: 10.1080/21670811.2017.1360143.
  21. Bharati, A., D. Moreira, J. Brogan, P. Hale, K. Bowyer, P. Flynn, A. Rocha, W. Scheirer. Beyond Pixels: Image Provenance Analysis Leveraging Metadata. – In: Proc. of IEEE Winter Conference on Applications of Computer Vision (WACV’19), IEEE, 2019, pp. 1692-1702. DOI: 10.1109/wacv.2019.00185.
  22. Vadrevu, A., R. Rajeshwari, L. Pabbathi, S. Sirimalla, D. Vodnala. Image Forgery Detection Using Metadata Analysis and ELA Processor. – In: Innovations in Computer Science and Engineering: Proceedings of the Ninth ICICSE, 2021, Springer, 2022, pp. 579-586. DOI: 10.1007/978-981-16-8987-1_62.
  23. Fischinger, D., M. Boyer. DF2023: The Digital Forensics 2023 Dataset for Image Forgery Detection. In Proceedings of the DF2023: The Digital Forensics 2023 Dataset for Image Forgery Detection. – In: P. Corcoran, Ed. Proc. of 25th Irish Machine Vision and Image Processing Conference (IMVIP’23), 2023, Through 01-09-2023, pp. 128-135.
  24. Liu, Z., X. Qi, P. H. Torr. Global Texture Enhancement for Fake Face Detection. – In: Proc. of Conf. on Computer Vision & Pattern Recognition (IEEE/CVF’20), 2020.
  25. Wang, C., W. Deng. Representative Forgery Mining for Fake Face Detection. – In: Proc. of Conf. on Computer Vision & Pattern Recognition (IEEE/CVF’21), 2021.
  26. Westerlund, M. The Emergence of Deepfake Technology: A Review. – Technology Innovation Management Review, Vol. 9, 2019.
  27. Yu, P., Z. Xia, J. Fei, Y. Lu. A Survey on Deepfake Video Detection. – Iet Biometrics, Vol. 10, 2021, pp. 607-624. DOI: 10.1049/bme2.12031.
  28. Badale, A., L. Castelino, C. Darekar, J. Gomes. Deep Fake Detection Using Neural Networks. – In: Proc. of 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS’18), Vol. 2, 2018.
  29. Güera, D., E. J. Delp. Deepfake Video Detection Using Recurrent Neural Networks. – In: Proc. of 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS’18), IEEE, 2018, pp. 1-6. DOI: 10.1109/avss.2018.8639163.
  30. Alkhalil, Z., C. Hewage, L. Nawaf, I. Khan. Phishing Attacks: A Recent Comprehensive Study and a New Anatomy. – Frontiers in Computer Science, Vol. 3, 2021, 563060. DOI: 10.3389/fcomp.2021.563060.
  31. Rastenis, J., S. Ramanauskaitė, J. Janulevičius, A. Čenys, A. Slotkienė, K. Pakrijauskas. e-Mail-Based Phishing Attack Taxonomy. – Applied Sciences, Vol. 10, 2020, 2363. DOI: 10.3390/app10072363.
  32. Alabdan, R. Phishing Attacks Survey: Types, Vectors, and Technical Approaches. – Future Internet, Vol. 12, 2020, 168. DOI: 10.3390/fi12100168.
  33. Güera, D., E. J. Delp. Deepfake Video Detection Using Recurrent Neural Networks. – In: Proc. of 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS’18), IEEE, 2018, pp. 1-6. DOI: 10.1109/avss.2018.8639163.
  34. Vijayalakshmi, M., S. Mercy Shalinie, M. H. Yang, R. M. U. Web Phishing Detection Techniques: A Survey on the State-of-the-Art, Taxonomy and Future Directions. – Iet Networks, Vol. 9, 2020, pp. 235-246. DOI: 10.1049/iet-net.2020.0078.
  35. Basit, A., M. Zafar, X. Liu, A. R. Javed, Z. Jalil, K. Kifayat. A Comprehensive Survey of AI-Enabled Phishing Attacks Detection Techniques. – Telecommunication Systems, Vol. 76, 2021, pp. 139-154. DOI: 10.1007/s11235-020-00733-2.
  36. Shahrivari, V., M. M. Darabi, M. Izadi. Phishing Detection Using Machine Learning Techniques. – arXiv Preprint arXiv:2009.11116 2020.
  37. Do, N. Q., A. Selamat, O. Krejcar, E. Herrera-Viedma, H. Fujita. Deep Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions. – IEEE Access, Vol. 10, 2022, pp. 36429-36463.
  38. Shirazi, H., S. R. Muramudalige, I. Ray, A. P. Jayasumana. Improved Phishing Detection Algorithms Using Adversarial Autoencoder Synthesized Data. – In: Proc. of 45th IEEE Conference on Local Computer Networks (LCN’20). IEEE, 2020, pp. 24-32. DOI: 10.1109/lcn48667.2020.9314775.
  39. Yu, G., W. Fan, W. Huang, J. An. An Explainable Method of Phishing Email Generation and Its Application in Machine Learning. – In: Proc. of 4th IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC’20). IEEE, 2020, Vol. 1, pp. 1279-1283. DOI: 10.1109/itnec48623.2020.9085171.
  40. Sahingoz, O. K., E. Buber, O. Demir, B. Diri. Machine Learning Based Phishing Detection from URLs. – Expert Systems with Applications, Vol. 117, 2019, pp. 345-357. DOI: 10.1016/j.eswa.2018.09.029.
  41. Guembe, B., A. Azeta, S. Misra, V. C. Osamor, L. Fernandez-Sanz, V. Pospelova. The Emerging Threat of AI-Driven Cyber Attacks: A Review. – Applied Artificial Intelligence, Vol. 36, 2022, 2037254. DOI: 10.1080/08839514.2022.2037254.
  42. Cinà, A. E., K. Grosse, A. Demontis, S. Vascon, W. Zellinger, B. A. Moser, A. Oprea, B. Biggio, M. Pelillo, F. Roli. Wild Patterns Reloaded: A Survey of Machine Learning Security against Training Data Poisoning. – ACM Computing Surveys, Vol. 55, 2023, pp. 1-39. DOI: 10.1145/3585385.
  43. Ramirez, M. A., S. K. Kim, H. A. Hamadi, E. Damiani, Y. J. Byon, T. Y. Kim, C. S. Cho, C. Y. Yeun. Poisoning Attacks and Defences on Artificial Intelligence: A Survey. – arXiv Preprint arXiv:2202.10276 2022. 1749.
  44. Gao, Y., B. G. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu, S. Nepal, H. Kim. Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review. – arXiv Preprint arXiv:2007.107602020.
  45. Li, Y., Y. Jiang, Z. Li, S. T. Xia. Backdoor Learning: A Survey. – IEEE Transactions on Neural Networks and Learning Systems, Vol. 35, 2022, pp. 5-22.
  46. Xia, G., J. Chen, C. Yu, J. Ma. Poisoning Attacks in Federated Learning: A Survey. – IEEE Access, Vol. 11, 2023, pp. 10708-10722. DOI: 10.1109/ACCESS.2023.3238823.
  47. Sikandar, H. S., H. Waheed, S. Tahir, S. U. Malik, W. Rafique. A Detailed Survey on Federated Learning Attacks and Defences. – Electronics, Vol. 12, 2023, 260. DOI: 10.3390/electronics12020260.
  48. Rodríguez-Barroso, N., D. Jiménez-López, M. V. Luzón, F. Herrera, E. Martínez-Cámara. Survey on Federated Learning Threats: Concepts, Taxonomy on Attacks and Defences, Experimental Study and Challenges. – Information Fusion, Vol. 90, 2023, pp. 148-173.
  49. Lu, Y. G., Kamath, Y. Yu. Indiscriminate Data Poisoning Attacks on Neural Networks. – arXiv Preprint arXiv:2204.09092 2022.
  50. Suciu, O., R. Marginean, Y. Kaya, H. Daume III, T. Dumitras. When Does Machine Learning {FAIL}? Generalized Transferability for Evasion and Poisoning Attacks. – In: Proc. of 27th USENIX Security Symposium, 2018, pp. 1299-1316.
  51. Vassilev, A., A. Oprea, A. Fordyce, H. Anderson. Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitigations. Technical Report, National Institute of Standards and Technology, 2024. DOI: 10.6028/nist.ai.100-2e2023.
  52. Oliynyk, D., R. Mayer, A. Rauber. I Know What You Trained Last Summer: A Survey on Stealing Machine Learning Models and Defences. – ACM Computing Surveys, Vol. 55, 2023, pp. 1-41. DOI: 10.1145/3595292.
  53. Rigaki, M., S. Garcia. A Survey of Privacy Attacks in Machine Learning. – ACM Computing Surveys, Vol. 56, 2023, pp. 1-34. DOI: 10.1145/3624010.
  54. Liu, X., L. Xie, Y. Wang, J. Zou, J. Xiong, Z. Ying, A. V. Vasilakos. Privacy and Security Issues in Deep Learning: A Survey. – IEEE Access, Vol. 9, 2021, pp. 4566-4593. DOI: 10.1109/ACCESS.2020.3045078.
  55. Liu, B., M. Ding, S. Shaham, W. Rahayu, F. Farokhi, Z. Lin. When Machine Learning Meets Privacy: A Survey and Outlook. – ACM Computing Surveys (CSUR), Vol. 54, 2021, pp. 1-36. DOI: 10.1145/3436755.
  56. Miao, Y., C. Chen, L. Pan, Q. L. Han, J. Zhang, Y. Xiang. Machine Learning-Based Cyber Attacks Targeting on Controlled Information: A Survey. – ACM Computing Surveys (CSUR), Vol. 54, 2021, pp. 1-36.
  57. Xiang, Y., Z. Chen, Z. Chen, Z. Fang, H. Hao, J. Chen, Y. Liu, Z. Wu, Q. Xuan, X. Yang. Open DNN Box by Power Side-Channel Attack. – IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, 2020, pp. 2717-2721.
  58. Carlini, N. A Complete List of All (arXiv) Adversarial Example Papers (Accessed on 18.07.2024). https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
  59. Ren, K., T. Zheng, Z. Qin, X. Liu. Adversarial Attacks and Defences. – Deep Learning. Engineering, Vol. 6, 2020, pp. 346-360. DOI: 10.1016/j.eng.2019.12.012.
  60. Deng, Y., X. Zheng, T. Zhang, C. Chen, G. Lou, M. Kim. An Analysis of Adversarial Attacks and Defences on Autonomous Driving Models. – In: Proc. of IEEE International Conference on Pervasive Computing and Communications (PerCom’20), IEEE, 2020, pp. 1-10. DOI: 10.1109/PerCom45495.2020.9127389.
  61. Liang, H., E. He, Y. Zhao, Z. Jia, H. Li. Adversarial Attack and Defence: A Survey. – Electronics, Vol. 11, 2022, 1283. DOI: 10.3390/electronics11081283.
  62. Wang, Y., T. Sun, S. Li, X. Yuan, W. Ni, E. Hossain, H. V. Poor. Adversarial Attacks and Defences in Machine Learning-Empowered Communication Systems and Networks: A Contemporary Survey. – IEEE Communications Surveys & Tutorials, 2023.
  63. Brown, T. B., D. Mané, A. Roy, M. Abadi, J. Gilmer. Adversarial Patch. – arXiv Preprint arXiv:1712.09665 2017.
  64. Ren, K., T. Zheng, Z. Qin, X. Liu. Adversarial Attacks and Defences. – Deep Learning. Engineering, Vol. 6, 2020, pp. 346-360. DOI: 10.1016/j.eng.2019.12.012.
  65. Shumailov, I., Y. Zhao, D. Bates, N. Papernot, R. Mullins, R. Anderson. Sponge Examples: Energy-Latency Attacks on Neural Networks. – In: Proc. of IEEE European Symposium on Security and Privacy (EuroS&P’21), IEEE, 2021, pp. 212-231.
  66. Zouave, E., M. Bruce, K. Colde, M. Jaitner, I. Rodhe, T. Gustafsson. Artificially Intelligent Cyberattacks. Stockholm: Totalförsvarets Forskningsinstitut FOI (Accessed on 18.08.2024). https://www.statsvet.uu.se/digitalAssets/769/c_769530-l_3-k_rapport-foi-vt20.pdf
  67. EU Action Plan against Disinformation, 2020 (Accessed on 18.08.2024). https://www.eeas.europa.eu/sites/default/files/action_plan_against_disinformation.pdf
  68. 2024 State of the Phish – Today’s Cyber Threats and Phishing Protection, 2024 (Accessed on 18.08.2024). https://www.proofpoint.com/us/resources/threat-reports/state-of-phish
  69. Kharchenko, V., H. Fesenko, O. Illiashenko. Quality Models for Artificial Intelligence Systems: Characteristic-Based Approach. – Development and Application. Sensors, Vol. 22, 2022, 4865. DOI: 10.3390/s22134865.
  70. Younis, H. A., T. A. E. Eisa, M. Nasser, T. M. Sahib, A. A. Noor, O. M. Alyasiri, S. Salisu, I. M. Hayder, H. A. Younis. A Systematic Review and Meta-Analysis of Artificial Intelligence Tools in Medicine and Healthcare: Applications, Considerations, Limitations, Motivation and Challenges. – Diagnostics, Vol. 14, 2024, 109. DOI: 10.3390/diagnostics14010109.
  71. Arrieta, A. B., N. Díaz-Rodríguez, J. del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. – Information Fusion, Vol. 58, 2020, pp. 82-115. DOI: 10.1016/j.inffus.2019.12.012.
  72. Coeckelbergh, M. AI for Climate: Freedom, Justice, and Other Ethical and Political Challenges. – AI and Ethics, Vol. 1, 2021, pp. 67-72. DOI: 10.1007/s43681-020-00007-2.
  73. Forrest, E. M., B. Boudreaux. Military Applications of Artificial Intelligence, 2020.
  74. Wirtz, B. W., J. C. Weyerer, B. J. Sturm. The Dark Sides of Artificial Intelligence: An Integrated AI Governance Framework for Public Administration. – International Journal of Public Administration, Vol. 43, 2020, pp. 818-829. DOI: 10.1080/01900692.2020.1749851.
  75. Brendel, A. B., M. Mirbabaie, T. B. Lembcke, L. Hofeditz. Ethical Management of Artificial Intelligence. – Sustainability, Vol. 13, 2021, 1974. DOI: 10.3390/su13041974.
  76. Galaz, V., M. A. Centeno, P. W. Callahan, A. Causevic, T. Patterson, I. Brass, S. Baum, D. Farber, J. Fischer, D. Garcia et al. Artificial Intelligence, Systemic Risks, and Sustainability. – Technology in Society, Vol. 67, 2021, 101741. DOI: 10.1016/j.techsoc.2021.101741.
  77. Edris, E. K. K. Utilisation of Artificial Intelligence and Cybersecurity Capabilities: A Symbiotic Relationship for Enhanced Security and Applicability. – Electronics, Vol. 14, 2025, 2057. DOI: 10.3390/electronics14102057.
  78. Rodrigues, R. Legal and Human Rights Issues of AI: Gaps, Challenges and Vulnerabilities. – Journal of Responsible Technology, Vol. 4, 2020, 100005. DOI: 10.1016/j.jrt.2020.100005.
  79. Okdem, S., S. Okdem. Artificial Intelligence in Cybersecurity: A Review and a Case Study. – Appl. Sci., Vol. 14, 2024, 10487. DOI: 10.3390/app142210487.
  80. Neretin, O., V. Kharchenko. A Model of Ensuring LLM Cybersecurity. – Radioelectronic and Computer Systems, 2025, No 2, pp. 201-215. DOI: 10.32620/reks.2025.2.13.
  81. Korchenko, O., A. Korchenko, S. Zybin, K. Davydenko. An Approach for Classifying Sociotechnical Attacks. – Radioelectronic and Computer Systems, 2025, No 2, pp. 230-252. DOI: 10.32620/reks.2025.2.15.
DOI: https://doi.org/10.2478/cait-2025-0028 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 156 - 185
Submitted on: Aug 7, 2025
Accepted on: Sep 1, 2025
Published on: Sep 25, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Olena Veprytska, Vyacheslav Kharchenko, Oleg Illiashenko, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.