Have a personal or library account? Click to login

HLSA – A New Hybrid List Scheduling Algorithm for Fog Computing

Open Access
|Sep 2025

References

  1. Aladwani, T. Scheduling IoT Healthcare Tasks in Fog Computing Based on Their Importance. – In: Proc. of International Learning and Technology Conference, 2019, pp. 560-569. DOI: 10.1016/j.procs.2019.12.138
  2. Dolui, K., S. K. Datta. Comparison of Edge Computing Implementations: Fog Computing, Cloudlet, and Mobile Edge Computing. – In: Proc. of IEEE Global Internet of Things Summit Conference (GIoTS’17), 2017. DOI: 10.1109/GIOTS.2017.8016213.
  3. Matrouk, K., K. Alatoun. Scheduling Algorithms in Fog Computing: A Survey. – International Journal of Networked and Distributed Computing, Vol. 9, 2021, pp. 59-74. DOI: 10.2991/ijndc.k.210111.001.
  4. Kumar, K. D., E. Umamaheswari. HPCWMF: A Hybrid Predictive Cloud Workload Management Framework Using Improved LSTM Neural Network. – Cybernetics and Information Technologies, Vol. 20, 2020, No 4, pp. 55-73.
  5. Madhumala, B. R., H. Tiwari, D. Verma. Virtual Machine Placement Using Energy-Efficient Particle Swarm Optimization in Cloud Datacenter. – Cybernetics and Information Technologies, Vol. 21, 2021, No 1, pp. 62-72.
  6. Satveer, M., S. Aswal. VM Consolidation Plan for Improving the Energy Efficiency of Cloud. – Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 145-159.
  7. Bonomi, F., R. Milito, P. Natarajan, J. Zhu. Fog Computing: A Platform for Internet of Things and Analytics. – Big Data and Internet of Things: A Roadmap for Smart Environments. – In: Studies in Computational Intelligence. Vol. 546. Springer, 2014, pp. 169-186. DOI: 10.1007/978-3-319-05029-4_7.
  8. Mohammad, S., N. Rajeswari. Overview of Cloud Computing and Its Types. – SSNR Electronic Journal, Vol. 6, 2019, pp. 61-67. http://www.jetir.org/papers/JETIRAT06008.pdf
  9. Alzoubi, Y. I., A. Aljaafreh. Blockchain-Fog Computing Integration Applications: A Systematic Review. – Cybernetics and Information Technologies, Vol. 23, 2023, No 1, pp. 3-37.
  10. Bhargavi, K., S. Babu, S. G. Shiva. Type-2-Soft-Set-Based Uncertainty Aware Task Offloading Framework for Fog Computing Using Apprenticeship Learning. – Cybernetics and Information Technologies, Vol. 23, 2023, No 1, pp. 38-58.
  11. Chu, H., S. Yang, P. Pillai, Y. Chen. Scheduling in Visual Fog Computing: NP-Completeness and Practical Efficient Solutions. – In: Proc. of AAAI Conference on Artificial Intelligence, Vol. 32, 2018. DOI: 10.1609/aaai.v32i1.12080.
  12. M. E. A Survey of Various Scheduling Algorithms in a Cloud Computing Environment. – Journal of Emerging Technologies and Innovative Research (JETIR), Vol. 2, 2013, pp. 131-135. DOI:10.15623/IJRET.2013.0202008.
  13. Bhutto, A., A. A. Chandio, K. K. Luhano, I. A. Korejo. Analysis of Energy and Network Cost Effectiveness of Scheduling Strategies in Datacentre. – Cybernetics and Information Technologies, Vol. 23, 2023, No 3, pp. 56-69.
  14. Varshney, P., Y. Simmhan. Characterizing Application Scheduling on Edge, Fog, and Cloud Computing Resources. – Software Practice and Experience Journal, Vol. 50, 2019. DOI: 10.1002/spe.2699.
  15. Khodadadi, F., A. Vahid, R. Buyya. Internet of Things: An Overview. 2017. DOI: 10.4550/arXiv.1703.06409.
  16. Slow, E., T. Tiropanis, W. Hall. Analytics for the Internet of Things: A Survey. – ACM Computing Surveys, Vol. 1, 2018, No 1. DOI: 10.1145/3204947.
  17. Dang, L. M., M. J. Piran, D. Han, K. Min, H. Moon. A Survey on the Internet of Things and Cloud Computing for Healthcare. – Journal of Electronics, Vol. 8, 2019. DOI: 10.3390/electronics8070768.
  18. Yu, W., F. Liang, X. He, W. G. Hatcher, G. Lu, J. Lin, X. Yang. A Survey on Edge Computing for the Internet of Things. – IEEE Access Journal, Vol. 6, 2018. DOI: 10.1109/ACCESS.2017.2778504.
  19. Barot, V., V. Kapadia, S. Pandya. QoS-Enabled IoT-Based Low-Cost Air Quality Monitoring System with Power Consumption Optimization. – Cybernetics and Information Technologies, Vol. 20, 2020, No 2, pp. 122-140.
  20. Sudha, K. S., N. Jeyanthi. A Review on Privacy Requirements and Application Layer Security in Internet of Things (IoT). – Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 50-72.
  21. Saritha, Sarasvathi V. Reliability Analysis of an IoT-Based Air Pollution Monitoring System Using Machine Learning Algorithm-BDBN. – Cybernetics and Information Technologies, Vol. 23, 2023, No 4, pp. 233-250.
  22. Tsai, C., W. Huang, M. Chiang, M. Chiang, C. Yang. A Hyper-Heuristic Scheduling Algorithm for Cloud. – IEEE Transactions on Cloud Computing, Vol. 2, 2014, pp. 236-250. DOI: 10.1109/TCC.2014.2315797.
  23. Reza, M., V. Khajehvand, A. Masoud, E. Akbari. A Task Scheduling Approach in Fog Computing: A Systematic Review. – International Journal of Communication Systemic, Vol. 33, 2020. DOI: 10.1002/dac.4583.
  24. Khan, A., A. Abbas, H. A. Khattak, F. Rehman, I. Ud Din, S. Ali. Effective Task Scheduling in Critical Fog Applications. – In: Scientific Programming. 2022. DOI: 10.1155/2022/9208066.
  25. Fu, X., B. Tang, F. Guo, L. Kang. Priority and Dependency-Based DAG Tasks Offloading in Fog/Edge Collaborative Environment. – In: Proc. of 24th IEEE International Conference on Computer Supported Cooperative Work in Design, Dalian, China, 2021. DOI: 10.1109/CSCWD49262.2021.9437784.
  26. Periasamy, P., R. Ujwala, K. Srikar, Y. V. D. Sai, K. S. Preetha, D. Sumathi, M. S. Sayeed. ERAM-EE: Efficient Resource Allocation and Management Strategies with Energy Efficiency under Fog-Internet of Things Environments. – Connection Science Journal, Vol. 36, 2024. DOI: 10.1080/09540091.2024.2350755.
  27. Fister, I., X. Yang, I. Fister, J. Brest, D. Fister. Brief Review of Nature-Inspired Algorithms for Optimization. – Elektrotehniski Vestnik/Electrotechnical Review Journal, Vol. 3, 2013. DOI: 10.48550/arXiv.1307.4186.
  28. Salem, A. H., G. Al-Gaphari. Meta-Heuristic Algorithms for Resource Allocation in Fog Computing. – International Journal for Modern Trends in Science and Technology, Vol. 8, 2022, pp. 134-143. DOI: 10.46501/IJMTST0802022.
  29. Xu, R., Y. Wang, Y. Cheng, Y. Zhu, Y. Xie, A. Sadiq, D. Yuan. Improved Particle Swarm Optimization-Based Workflow Scheduling in Cloud-Fog Environment. – Springer Nature Switzerland, Vol. 342, 2019, pp. 337-347. DOI: 10.1007/978-3-030-11641-5_27.
  30. Lin, Y., C. Cheng, F. Xiao, K. Alsubhi, H. Moaiteq. A DAG-Based Cloud-Fog Layer Architecture for Distributed Energy Management in Smart Power Grids in the Presence of PHEVs. – Journal of Sustainable Cities and Society, Vol. 75, 2021. DOI: 10.1016/j.scs.2021.103335.
  31. Abohamama, A. S., A. El‐Ghamry, E. Hamouda. Real‐Time Task Scheduling Algorithm for IoT‐Based Applications in the Cloud-Fog Environment. – Journal of Network and Systems Management, Vol. 30, 2022. DOI: 10.1007/s10922-022-09664-6.
  32. Mokni, M., S. Yassa, J. Eddine, R. Chelouah, M. Nazih. Cooperative Agents- Based Approach for Workflow Scheduling on Fog Cloud Computing. – Springer Journal of Ambient Intelligence and Humanized Computing, Vol. 13, 2021. DOI: 10.1007/s12652-021-03187-9.
  33. Jangu, N., Z. Raza. Improved Jellyfish Algorithm-Based Multi-Aspect Task Scheduling Model for IoT Tasks over Fog-Integrated Cloud Environment. – Journal of Cloud Computing: Advances, Systems and Applications, Vol. 11, 2022. DOI: 10.1186/s13677-022-00376-5.
  34. Kumar, M. S., G. R. Karri. EEOA: Cost and Energy Efficient Task Scheduling in a Cloud-Fog Framework. – Journal of Sensors, Vol. 23, 2023. DOI: 10.3390/s23052445.
  35. Ameena, B., L. Ramasamy. Drawer Cosine Optimization Enabled Task Offloading in Fog Computing. – Expert Systems with Applications Journal, Vol. 259, 2025. DOI: 10.1016/j.eswa.2024.125212.
  36. Wang, J., D. Li. Task Scheduling Based on a Hybrid Heuristic Algorithm for Smart Production Line with Fog Computing. – Journal of Sensors, Vol. 19, 2019. DOI: 10.3390/s19051023.
  37. Kabirzadeh, S., D. Rahbari, M. Nickray. A Hyper-Heuristic Algorithm for Scheduling of Fog Networks. – In: Proc. of IEEE Open Innovations Association FRUCT Conference, Vol. 562, Finland, 2017, pp. 148-155. DOI: 10.23919/FRUCT.2017.8250177.
  38. Krivic, P., M. Kusek, I. Cavrak, P. Skoc. Dynamic Scheduling of Contextually Categorized Internet of Things Services in a Fog Computing Environment. – Journal of Sensors, Vol. 22, 2022. DOI: 10.3390/s22020465.
  39. Mohammad, A., R. Mahmoud, N. Jamal, A. Al Smadi, M. Alshabanah, D. Alrajhi, H. Alkhaldi, M. K. Alsmadi. Fog Computing Scheduling Algorithm for a Smart City. – International Journal of Electrical and Computer Engineering (IJECE), Vol. 11, 2021, pp. 2219-2228. DOI: 10.11591/ijece.v11i3.pp2219-2228.
  40. Yu, J., R. Buyya, K. Ramamohanarao. Workflow Scheduling Algorithms for Grid Computing, Metaheuristics for Scheduling in Distributed Computing Environments. – Springer, Vol. 146, 2008, pp. 173-214. DOI: 10.1007/978-3-540-69277-5_7.
  41. Wu, X., M. Deng, R. Zhang, B. Zeng, S. Zhou. A Task Scheduling Algorithm Based on QOS-Driven in Cloud Computing. – In: Proc. of International Conference on Information Technology and Quantitative Management, China, Vol. 17, 2013, pp. 1162-1169. DOI: 10.1016/j.procs.2013.05.148.
  42. Pham, X., N. Doan, N. Dao, N. Quang, E. Huh. A Cost and Performance-Effective Approach for Task Scheduling Based on Collaboration between Cloud and Fog Computing. – International Journal of Distributed Sensor Networks, Vol. 13, 2017. DOI: 10.1177/1550147717742073.
  43. Madhura, R., L. Elizabeth, R. Uthariaraj. An Improved List-Based Task Scheduling Algorithm for a Fog Computing Environment. – Computing Journal, Vol. 103, 2021. DOI: 10.1007/s00607-021-00935-9.
  44. Tariq, R., F. Aadil, M. F. Malik, S. Ejaz, M. U. Khan, M. F. Khan. Directed Acyclic Graph-Based Task Scheduling Algorithm for Heterogeneous Systems. – In: Proc. of Intelligent Systems Conference, London, Vol. 2, 2019, pp. 936-947. DOI: 10.1007/978-3-030-01057-7_69.
  45. Goel, H., N. Chamoli. Job Scheduling Algorithms in Cloud Computing: A Survey. – International Journal of Computer Applications, Vol. 95, 2014, No 23, pp.19-22. DOI: 10.5120/16735-6981.
  46. Vijaya, C., P. Srinivasan. A Hybrid Technique for Server Consolidation in Cloud Computing Environment. – Cybernetics and Information Technologies, Vol. 20, 2020, No 1, pp. 36-52.
  47. Sakellariou, R., H. Zhao. A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems. – In: Proc. of IEEE International Parallel and Distributed Processing Symposium Conference, USA, 2004. DOI: 10.1109/IPDPS.2004.1303065.
  48. Ahmad, W., B. Alam, S. Malik. Performance Analysis of List Scheduling Algorithms by Random Synthetic DAGs. – SSRN Electronic Journal, 2019. DOI: 10.2139/ssrn.3349016.
  49. Zhao, H., R. Sakellariou. An Experimental Investigation into the Rank Function of the Heterogeneous Earliest Finish Time Scheduling Algorithm. – In: Proc. of Conference of Parallel Processing. Vol. 2790. Springer, 2003, pp. 189-194. DOI: 10.1007/978-3-540-45209-6_28.
  50. Ali, H. G. E. H., I. A. Saroit, A. M. Kotb. Grouped Tasks Scheduling Algorithm Based on QoS in Cloud Computing Network. – Egyptian Informatics Journal, Vol. 18, 2016. DOI: 10.1016/j.eij.2016.07.002.
DOI: https://doi.org/10.2478/cait-2025-0026 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 123 - 141
Submitted on: Jul 7, 2025
Accepted on: Aug 12, 2025
Published on: Sep 25, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hend Gamal El Din Hassan Ali, Imane Aly Saroit, Amira Mohamed Kotb, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.