Have a personal or library account? Click to login

Unification of Semantic and Instance Segmentation with BoundaryX

Open Access
|Sep 2025

References

  1. Brand, A., A. Manandhar. Semantic Segmentation of Burned Areas in Satellite Images Using a U-Net-Based Convolutional Neural Network. – Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 43, 2021, No B3, pp. 47-53.
  2. Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected Crfs. 2014, arXiv, 1412.7062.
  3. Girshick, R., J. Donahue, T. Darrell, J. Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. – In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580-587.
  4. Gkioxari, G., J. Malik, J. Johnson. Mesh r-cnn. – In: Proc. of IEEE/CVF Int. Conference on Computer Vision, 2019, pp. 9785-9795.
  5. Hafiz, A. M., G. M. Bhat. A Survey on Instance Segmentation: State of the Art. – International Journal of Multimedia Information Retrieval, Vol. 9, 2020, pp. 171-189.
  6. He, K., G. Gkioxari, P. Dollár, R. Girshick. Mask r-cnn. – In: Proc. of IEEE Int. Conference on Computer Vision, 2017, pp. 2961-2969.
  7. He, K., X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. – In: Proc. of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
  8. Hu, J., L. Shen, G. Sun. Squeeze-and-Excitation Networks. – In: Proc. of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141.
  9. Huang, G., Z. Liu, L. Van Der Maaten, K. Weinberger. Densely Connected Convolutional Networks. – In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700-4708.
  10. Lin, T. Y., M. Maire,, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L. Zitnick. Microsoft Coco: Common Objects in Context. – In: Lecture Notes in Computer Science. Vol. 8693. 2014, pp. 740-755.
  11. Long, D. T. Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition. – Cybernetics and Information Technologies, Vol. 24, 2024, No 1, pp. 171-189.
  12. Padilla, R., S. L. Netto, E. A. B. da Silva. A Survey on Performance Metrics for Object-Detection Algorithms. – In: Proc. of 2020 Int. Conference on Systems, Signals and Image Processing, 2020, pp. 237-242.
  13. Pan, H., Y. Hong, W. Sun, Y. Jia. Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes. – IEEE Transactions on Intelligent Transportation Systems, Vol. 24, 2023, pp. 3448-3460.
  14. Panchal, S., M. Kokare. Resmu-Net: Residual Multi-Kernel u-Net for Blood Vessel Segmentation in Retinal Fundus Images. – Biomedical Signal Processing and Control, 2024, 90:105859.
  15. Peng, L., C. Zhu, L. Bian. U-Shape Transformer for Underwater Image Enhancement. – IEEE Transactions on Image Processing, Vol. 32, 2021, pp.3066-3079.
  16. Redmon, J., S. Divvala, R. Girshick, A. Farhadi. You Only Look Once: Unified, Real-Time Object Detection. – In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779-788.
  17. Ronneberger, O., P. Fischer, T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. – In: Lecture Notes in Computer Sciences. Vol. 9351. 2015, pp. 234-241.
  18. Sharma, R., M. Saqib, C. Lin, M. Blumenstein. A Survey on Object Instance Segmentation. – SN Computer Science, Vol. 3, 2022, No 499.
  19. Xu, J., Z. Xiong, S. Bhattacharyya. Pidnet: A Real-Time Semantic Segmentation Network Inspired by Pid Controllers. – In: Proc. of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 19529-19539.
  20. Yu, C., J. Wang, C. Peng, C. Gao, G. Yu, N. Sang. Learning a Discriminative Feature Network for Semantic Segmentation. – In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1857-1866.
  21. Zhang, W., S. Chen, Y. Ma, Y. Liu, X. Cao. Etunet: Exploring Efficient Transformer Enhanced UNet for 3d Brain Tumor Segmentation. – Computers in Biology and Medicine, Vol. 171, 2024, 108005.
DOI: https://doi.org/10.2478/cait-2025-0022 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 54 - 67
Submitted on: May 13, 2025
Accepted on: Sep 4, 2025
Published on: Sep 25, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Teodor Boyadzhiev, Krassimira Ivanova, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.