Have a personal or library account? Click to login
Refining Graduation Classification Accuracy with Synergistic Deep Learning Models Cover

Refining Graduation Classification Accuracy with Synergistic Deep Learning Models

Open Access
|Jun 2025

References

  1. Dutt, A., M. A. Ismail, T. Herawan. A Systematic Review on Educational Data Mining. – IEEE Access, Vol. 5, 2017, pp. 15991-16005.
  2. Bienkowski, M., M. Feng, B. Means. Enhancing Teaching and Learning through Educational Data Mining and Learning Analytics. – U.S. Department of Education, Office of Educational Technology, 2012.
  3. Xu, X., J. Wang, H. Peng, R. Wu. Prediction of Academic Performance Associated with Internet Usage Behaviors Using Machine Learning Algorithms. – Computers in Human Behavior, Vol. 98, 2019, pp. 166-173.
  4. Bendangnuksung, D. P. Students’ Performance Prediction Using Deep Neural Network. – International Journal of Applied Engineering Research, 2018, pp. 1171-1176.
  5. Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio. Graph Attention Networks. – In: Proc. of International Conference on Learning Representations (ICLR’18), 2018. DOI: 10.48550/arXiv.1710.10903.
  6. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin. Attention is All You Need. – Advances in Neural Information Processing Systems (NeurIPS), 2017, pp. 5998-6008.
  7. Popchev, I. P., D. A. Orozova. Towards a Multistep Method for Assessment in e-Learning of Emerging Technologies. – Cybernetics and Information Technologies, Vol. 20, 2020, No 3, pp. 116-129.
  8. Kustitskaya, T. A., A. A. Kytmanov, M. V. Noskov. Early Student-at-Risk Detection by Current Learning Performance and Learning Behavior Indicators. – Cybernetics and Information Technologies, Vol. 22, 2022, No 1, pp. 117-130.
  9. Iqbal, Z., J. Qadir, A. N. Mian, F. Kamiran. Machine Learning Based Student Grade Prediction: A Case Study. – arXiv preprint, 2021.
  10. Alshanqiti, A., A. Namoun. Predicting Student Performance and Its Influential Factors Using Hybrid Regression and Multi-Label Classification. – IEEE Access, Vol. 8, 2020, pp. 203827-203844. DOI: 10.1109/access.2020.3036572.
  11. Waheed, H., S. Hassan, N. R. Aljohani, J. Hardman, R. Nawaz. Predicting Academic Performance of Students from VLE Big Data Using Deep Learning Models. – Computers in Human Behavior, Vol. 104, 2020, pp 106-189. DOI: 10.1016/j.chb.2019.106189.
  12. Wardle, C. Challenges of Content Moderation: Define “Harmful Content” (online). Retrieved 1 September 2023. https://tinyurl.com/ys5wc3t6
  13. Son, N. T. K., N. V. Bien, N. H. Quynh, C. C. Tho. Machine Learning Based Admission Data Processing for Early Forecasting Students’ Learning Outcomes. – International Journal of Data Warehousing and Mining, 2022, pp. 1-15. DOI: 10.4018/IJDWM.313585.
  14. Son, N. T. K., N. H. Quynh, B. T. Minh. Early Prediction Students’ Graduation Rank Using LAGT: Enhancing Accuracy with GCN and Transformer on Small Datasets. – J. Comput. Sci. Cybern., Vol. 40, 2024, No 4, pp. 299-314. DOI: 10.15625/1813-9663/21095.
  15. Cardona, T. A., E. A. Cudney. Predicting Student Retention Using Support Vector Machines. – Procedia Manufacturing, 2019, pp. 1827-1833. DOI: 10.1016/j.promfg.2020.01.256.
  16. Mukhtar, H., J. A. Amien, F. Dewi. Prediction of Student Graduation Using Decision Tree. – CELSciTech, Vol. 5, 2021, pp. 7-18.
  17. Yaqin, A., M. Rahardi, F. F. Abdulloh. Accuracy Enhancement of Prediction Method Using SMOTE for Early Prediction Student’s Graduation in XYZ University. – International Journal of Advanced Computer Science and Applications, Vol. 13, 2022, No 6, pp. 418-424. DOI: 10.14569/IJACSA.2022.0130652.
  18. Poudyal, S., M. J. Mohammadi-Aragh, J. Ball. Prediction of Student Academic Performance Using a Hybrid 2D CNN Model. – Electronics, Vol. 11, 2022, No 7, pp. 1-21. DOI: 10.3390/electronics11071005.
  19. Kusumawardani, S. S., S. A. Alfarozi. Transformer Encoder Model for Sequential Prediction of Student Performance Based on Their Log Activities. – IEEE Access, Vol. 11, 2023, pp. 18960-18971. DOI: 10.1109/ACCESS.2023.3246122.
  20. Yang, G., Y. Ouyang, Z. Ye, R. Gao, Y. Zeng. Social-Path Embedding-Based Transformer for Graduation Development Prediction. – Applied Intelligence, Vol. 52, 2022, pp 14119-14136. DOI: 10.1007/s10489-022-03268-y.
  21. Mirza, M., S. Osindero. Conditional Generative Adversarial Nets. – arXiv preprint, 2014.
DOI: https://doi.org/10.2478/cait-2025-0016 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 131 - 151
Submitted on: Nov 11, 2024
Accepted on: Mar 7, 2025
Published on: Jun 25, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Nguyen Thi Kim Son, Nguyen Huu Quynh, Bui Tuan Minh, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.