References
- Dutt, A., M. A. Ismail, T. Herawan. A Systematic Review on Educational Data Mining. – IEEE Access, Vol. 5, 2017, pp. 15991-16005.
- Bienkowski, M., M. Feng, B. Means. Enhancing Teaching and Learning through Educational Data Mining and Learning Analytics. – U.S. Department of Education, Office of Educational Technology, 2012.
- Xu, X., J. Wang, H. Peng, R. Wu. Prediction of Academic Performance Associated with Internet Usage Behaviors Using Machine Learning Algorithms. – Computers in Human Behavior, Vol. 98, 2019, pp. 166-173.
- Bendangnuksung, D. P. Students’ Performance Prediction Using Deep Neural Network. – International Journal of Applied Engineering Research, 2018, pp. 1171-1176.
- Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio. Graph Attention Networks. – In: Proc. of International Conference on Learning Representations (ICLR’18), 2018. DOI: 10.48550/arXiv.1710.10903.
- Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin. Attention is All You Need. – Advances in Neural Information Processing Systems (NeurIPS), 2017, pp. 5998-6008.
- Popchev, I. P., D. A. Orozova. Towards a Multistep Method for Assessment in e-Learning of Emerging Technologies. – Cybernetics and Information Technologies, Vol. 20, 2020, No 3, pp. 116-129.
- Kustitskaya, T. A., A. A. Kytmanov, M. V. Noskov. Early Student-at-Risk Detection by Current Learning Performance and Learning Behavior Indicators. – Cybernetics and Information Technologies, Vol. 22, 2022, No 1, pp. 117-130.
- Iqbal, Z., J. Qadir, A. N. Mian, F. Kamiran. Machine Learning Based Student Grade Prediction: A Case Study. – arXiv preprint, 2021.
- Alshanqiti, A., A. Namoun. Predicting Student Performance and Its Influential Factors Using Hybrid Regression and Multi-Label Classification. – IEEE Access, Vol. 8, 2020, pp. 203827-203844. DOI: 10.1109/access.2020.3036572.
- Waheed, H., S. Hassan, N. R. Aljohani, J. Hardman, R. Nawaz. Predicting Academic Performance of Students from VLE Big Data Using Deep Learning Models. – Computers in Human Behavior, Vol. 104, 2020, pp 106-189. DOI: 10.1016/j.chb.2019.106189.
- Wardle, C. Challenges of Content Moderation: Define “Harmful Content” (online). Retrieved 1 September 2023. https://tinyurl.com/ys5wc3t6
- Son, N. T. K., N. V. Bien, N. H. Quynh, C. C. Tho. Machine Learning Based Admission Data Processing for Early Forecasting Students’ Learning Outcomes. – International Journal of Data Warehousing and Mining, 2022, pp. 1-15. DOI: 10.4018/IJDWM.313585.
- Son, N. T. K., N. H. Quynh, B. T. Minh. Early Prediction Students’ Graduation Rank Using LAGT: Enhancing Accuracy with GCN and Transformer on Small Datasets. – J. Comput. Sci. Cybern., Vol. 40, 2024, No 4, pp. 299-314. DOI: 10.15625/1813-9663/21095.
- Cardona, T. A., E. A. Cudney. Predicting Student Retention Using Support Vector Machines. – Procedia Manufacturing, 2019, pp. 1827-1833. DOI: 10.1016/j.promfg.2020.01.256.
- Mukhtar, H., J. A. Amien, F. Dewi. Prediction of Student Graduation Using Decision Tree. – CELSciTech, Vol. 5, 2021, pp. 7-18.
- Yaqin, A., M. Rahardi, F. F. Abdulloh. Accuracy Enhancement of Prediction Method Using SMOTE for Early Prediction Student’s Graduation in XYZ University. – International Journal of Advanced Computer Science and Applications, Vol. 13, 2022, No 6, pp. 418-424. DOI: 10.14569/IJACSA.2022.0130652.
- Poudyal, S., M. J. Mohammadi-Aragh, J. Ball. Prediction of Student Academic Performance Using a Hybrid 2D CNN Model. – Electronics, Vol. 11, 2022, No 7, pp. 1-21. DOI: 10.3390/electronics11071005.
- Kusumawardani, S. S., S. A. Alfarozi. Transformer Encoder Model for Sequential Prediction of Student Performance Based on Their Log Activities. – IEEE Access, Vol. 11, 2023, pp. 18960-18971. DOI: 10.1109/ACCESS.2023.3246122.
- Yang, G., Y. Ouyang, Z. Ye, R. Gao, Y. Zeng. Social-Path Embedding-Based Transformer for Graduation Development Prediction. – Applied Intelligence, Vol. 52, 2022, pp 14119-14136. DOI: 10.1007/s10489-022-03268-y.
- Mirza, M., S. Osindero. Conditional Generative Adversarial Nets. – arXiv preprint, 2014.
