Have a personal or library account? Click to login
Methods and Algorithms for Flexible Job Shop Scheduling − A State of the Art Cover

Methods and Algorithms for Flexible Job Shop Scheduling − A State of the Art

Open Access
|Jun 2025

References

  1. Borissova, D. Optimal Scheduling for Dependent Details Processing Using MS Excel Solver. – Cybernetics and Information Technologies, Vol. 8, 2008, No 2, pp. 102-111.
  2. Vassileva, M. Operative Planning of the Production Program in a Textile Enterprise with the Help of MKO-1 Software System. – Cybernetics and Information Technologies, Vol. 6, 2006, No 1, pp. 58-68.
  3. Vassileva, M., B. Staykov. Operative Planning of the Production Program with the Help of MKO-2 Software System. – Cybernetics and Information Technologies, Vol. 9, 2009, No 4, pp. 110-120.
  4. Kirilov, L., V. Guliashki, K. Genova. Multicriteria Decision Making in Manufacturing Scheduling (in Bulgarian). Prof. Dr. Ivan Mustakerov, Ed. Education Ltd., 2016. 281 p. ISBN 978-954-552-074-7.
  5. Hajariwala, D. C., S. S. Patil, S. M. Patil. A Review of Metaheuristic Algorithms for Job Shop Scheduling. – Engineering Access, Vol. 11, 2024, No 1, pp. 65-91.
  6. Brucker, P. Scheduling Algorithms. 3rd Edition. Springer, 2007. ISBN 978-3-540-73053-4.
  7. Guliashki, V., L. Kirilov, A. Nuzi. Optimization Models and Strategy Approaches Dealing with Economic Crises, Natural Disasters, and Pandemics – an Overview. – Cybernetics and Information Technologies, Vol. 23, 2023, No 4, pp. 3-25.
  8. Genova, K., L. Kirilov, V. Guliashki. A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems. – Cybernetics and Information Technologies, Vol. 15, 2015, No 2, pp. 3-22.
  9. Santos, H. G., T. A. M. Toffolo. Mixed Integer Linear Programming with Python. 2020. 73 p. https://readthedocs.org/projects/python-mip/downloads/pdf/latest/
  10. Zhou, K., C. Tan, Y. Zhao, J. Yu, Z. Zhang. Research on Solving Flexible Job Shop Scheduling Problem Based on Improved GWO Algorithm SS-GWO. – Neural Processing Letters, Vol. 56, 2024, No 26. DOI: 10.1007/s11063-024-11488-1.
  11. Xie, J., L. Gao, K. Peng, X. Li, L. Haoran. Review on Flexible Job Shop Scheduling. – IET Collaborative Intelligent Manufacturing, Vol. 1, 2019, No 2. DOI: 10.1049/iet-cim.2018.0009.
  12. Yu, Y. A Research Review on Job Shop Scheduling Problem. – E3S Web of Conferences, Vol. 253, 2021, No 1, 02024. DOI:10.1051/e3sconf/202125302024.
  13. Dauzère-Pérès, S., J. Ding, L. Shen, K. Tamssaouet. The Flexible Job Shop Scheduling Problem: A Review. – European Journal of Operational Research, Vol. 314, 2024, No 2, pp. 409-432. ISSN 0377-2217. DOI: 10.1016/j.ejor.2023.05.017.
  14. Driss, E., R. Mellouli, W. Hachicha. Mixed Integer Programming for Job Shop Scheduling Problem with Separable Sequence-Dependent Setup Times. – American Journal of Mathematical and Computational Sciences, Vol. 3, 2018, pp. 31-36. https://www.researchgate.net/publication/322901435
  15. Ham, A., M.-J. Park, K. M. Kim. Energy-Aware Flexible Job Shop Scheduling Using Mixed Integer Programming and Constraint Programming. – Mathematical Problems in Engineering, Vol. 2021, 2021, Article ID 8035806. 12 p. DOI: 10.1155/2021/8035806.
  16. Fekih, A., H. Hadda, I. Kacem, A. B. Hadj-Alouane. Mixed-Integer Programming and Constraint Programming Models for the Flexible Job Shop Scheduling Problem. – In: T. Masrour, I. El Hassani, N. Barka, Eds. Artificial Intelligence and Industrial Applications, A2IA 2023, Lecture Notes in Networks and Systems. Vol. 771. Cham, Springer, 2023. DOI: 10.1007/978-3-031-43524-9_8.
  17. Ziaee, M. A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem, World Academy of Science, Engineering and Technology. – International Journal of Mathematical and Computational Science, Vol. 12, 2018, No 6, pp. 91-95.
  18. Günlük, O., U. Bilge. A New MILP Formulation for the Flexible Job-Shop Scheduling Problem. – European Journal of Operational Research, Vol. 237, 2014, No 3, pp. 926-939. DOI: 10.1016/j.ejor.2014.02.039.
  19. Li, Y., R. Jiao. A Mixed-Integer Linear Programming Model for the Flexible Job-Shop Scheduling Problem with Sequence-Dependent Setup Times. – Journal of Manufacturing Systems, Vol. 41, 2016, pp. 1-15. DOI: 10.1016/j.jmsy.2016.07.002.
  20. Vidal, T., A. R. Alves. A Mixed-Integer Linear Programming Model for the Flexible Job-Shop Scheduling Problem with Tool Assignment. – Computers & Operations Research, Vol. 106, 2019, pp. 82-94. DOI: 10.1016/j.cor.2018.03.006.
  21. Meng, L., C. Zhang, Y. Ren, B. C. L. Zhang. Mixed-Integer Linear Programming and Constraint Programming Formulations for Solving Distributed Flexible Job Shop Scheduling Problem. – Computers & Industrial Engineering, Vol. 142, 2020, 106347. ISSN 0360-8352. DOI: 10.1016/j.cie.2020.106347.
  22. Varone, S., D. Schindl, C. Beffa. Flexible Job Shop Scheduling Problem with Sequence-Dependent Transportation Constraints and Setup Times. – In: Proc. of 16th Conference on Computer Science and Intelligence Systems ACSIS (FEDCSIS’21), Vol. 26, 2021, pp. 97-102. ISSN: 2300-5963. DOI: 10.15439/2021F14.
  23. Meng, L., B. Zhang, K. Gao, P. Duan. An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times. – Sustainability, Vol. 15, 2023, No 1, 776. DOI: 10.3390/su15010776.
  24. Perroux, T., T. Arbaoui, L. Merghem-Boulahia. The Flexible Job Shop Scheduling Problem with Setups and Operator Skills: An Application in the Textile Industry. – IFAC-PapersOnLine, Vol. 58, 2024, Issue 19, pp. 1090-1095. ISSN 2405-8963. DOI: 10.1016/j.ifacol.2024.09.125.
  25. Kress, D., D. Müller. Mathematical Models for a Flexible Job Shop Scheduling Problem with Machine Operator Constraints. – IFAC-PapersOnLine, Vol. 52, 2019, Issue 13, pp. 94-99. ISSN 2405-8963. DOI: 10.1016/j.ifacol.2019.11.144.
  26. Brucker, P., S. Schulz, J. S. Neufeld, U. Buscher. A Multi-Objective Iterated Local Search Algorithm for Comprehensive Energy-Aware Hybrid Flow Shop Scheduling. – Journal of Cleaner Production, Vol. 224, 2019, pp. 421-434. ISSN 0959-6526. DOI: 10.1016/j.jclepro.2019.03.155.
  27. Araujo, K., E. Birgin, D. Ronconi. A Constraint Programming Model for the Flexible Job Shop Scheduling Problem with Sequencing Flexibility and Position-Based Learning Effects. – Simpósio Brasileiro de Pesquisa Operacional (SBPO’22), Rio de Janeiro, Brazil, 2022, pp. 2965-1476. https://proceedings.science/sbpo/sbpo-2022/trabalhos/a-constraint-programming-model-for-the-flexible-job-shop-scheduling-problem-with?lang=pt-br https://repositorio.usp.br/item/003172659
  28. Araujo, K., E. Birgin, D. Ronconi. Models, Constructive Heuristics, and Benchmark Instances for the Flexible Job Shop Scheduling Problem with Sequencing Flexibility and Position-Based Learning Effect. – arXiv:2403.16766 [math.OC], 2022. DOI: 10.48550/arXiv.2403.16766.
  29. Saber, R. G., P. Leyman, E.-H. Aghezzaf. Modeling the Integrated Flexible Job-Shop and Operator Scheduling in Flexible Manufacturing Systems. – IFAC-PapersOnLine, Vol. 58, 2024, Issue 19, pp. 343-348. ISSN 2405-8963. DOI: 10.1016/j.ifacol.2024.09.235.
  30. Almgren, T., M. Patriksson, A. Strömberg, K. Thörnblad. A Competitive Iterative Procedure Using a Time-Indexed Model for Solving Flexible Job Shop Scheduling Problems. – Optimization Online, 2015. https://optimization-online.org/2013/08/3991/
  31. Czerniachowska, K., R. Wichniarek, K. Żywicki. Constraint Programming for Flexible Flow Shop Scheduling Problem with Repeated Jobs and Repeated Operations. – Advances in Science and Technology Research Journal, Vol. 17, 2023, No 3, pp. 280-293. ISSN 2299-8624. DOI: 10.12913/22998624/166588.
  32. Li, Z., Y. Chen. Minimizing the Makespan and Carbon Emissions in the Green Flexible Job Shop Scheduling Problem with Learning Effects. – Scientific Reports, Vol. 13, 2023, 6369. DOI: 10.1038/s41598-023-33615-z.
  33. Mehdizadeh, E., F. Soleimaninia. A Vibration-Damping Optimization Algorithm to Solve Flexible Job Shop Scheduling Problems with Reverse Flows. – International Journal of Research in Industrial Engineering, Vol. 12, 2023, No 4, pp. 431-449. DOI: 10.22105/riej.2023.383451.1363.
  34. Gran, S. S., I. Ismail, T. A. Ajol, A. F. A. Ibrahim. Mixed Integer Programming Model for Flexible Job-Shop Scheduling Problem (FJSP) to Minimize Makespan and Total Machining Time. – In: Proc. of International Conference on Computer, Communications, and Control Technology (I4CT’15), Kuching, Malaysia, 2015, pp. 413-417. DOI: 10.1109/I4CT.2015.7219609.
  35. Birgin, E. G., P. Feofiloff, C. G. Fernandes et al. A MILP Model for an Extended Version of the Flexible Job Shop Problem. – Optim. Lett., Vol. 8, 2014, No 4, pp. 1417-1431.
  36. Hansmann, R. S., T. Rieger, U. T. Zimmermann. Flexible Job Shop Scheduling with Blockages. – Math. Methods Oper. Res., Vol. 79, 2014, No 2, pp. 135-161.
  37. Meng, L., C. Zhang, X. Shao, Y. Ren. MILP Models for Energy-Aware Flexible Job Shop Scheduling Problem. – Journal of Cleaner Production, Vol. 210, 2019, pp. 710-723. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2018.11.021.
  38. Meng, L., C. Zhang, B. Zhang, K. Gao, Y. Ren, H. Sang. MILP Modeling and Optimization of Multi-Objective Flexible Job Shop Scheduling Problem with Controllable Processing Times. – Swarm and Evolutionary Computation, Vol. 82, 2023, 101374. ISSN: 2210-6502. DOI: 10.1016/j.swevo.2023.101374.
  39. Gedik, R., C. Rainwater, H. Nachtmann, E. A. Pohl. Analysis of a Parallel Machine Scheduling Problem with Sequence Dependent Setup Times and Job Availability Intervals. – European Journal of Operational Research, Vol. 251, 2016, Issue 2, pp. 640-650. ISSN 0377-2217. DOI: 10.1016/j.ejor.2015.11.020.
  40. Ham, M., E. Cakici. Flexible Job Shop Scheduling Problem with Parallel Batch Processing Machines: MIP and CP Approaches. – Computers & Industrial Engineering, Vol. 102, 2016, pp. 160-165. ISSN 0360-8352. DOI: 10.1016/j.cie.2016.11.001.
  41. Fekih, A., H. Hadda, I. Kacem, A. B. Hadj-Alouane. Mixed-Integer Programming and Constraint Programming Models for the Flexible Job Shop Scheduling Problem. – In: T. Masrour, I. El Hassani, N. Barka, Eds. Artificial Intelligence and Industrial Applications. A2IA 2023. – Lecture Notes in Networks and Systems. Vol. 771. Cham, Springer, 2023. DOI: 10.1007/978-3-031-43524-9_8.
  42. Ku, W.-Y., J. C. Beck. Mixed Integer Programming Models for Job Shop Scheduling: A Computational Analysis. – Computers & Operations Research, Vol. 73, 2016, pp. 165-173. ISSN 0305-0548. DOI: 10.1016/j.cor.2016.04.006.
  43. Müller, D., M. G. Müller, D. Kress, E. Pesch. An Algorithm Selection Approach for the Flexible Job Shop Scheduling Problem: Choosing Constraint Programming Solvers through Machine Learning. – European Journal of Operational Research, Vol. 302, 2022, Issue 3, pp. 874-891. ISSN 0377-2217. DOI: 10.1016/j.ejor.2022.01.034.
  44. Aschauer, A., F. Roetzer, A. Steinboeck, A. Kugi. Scheduling of a Flexible Job Shop with Multiple Constraints. – IFAC-PapersOnLine, Vol. 51, 2018, Issue 11, pp. 1293-1298. ISSN 2405-8963. DOI: 10.1016/j.ifacol.2018.08.354. https://www.sciencedirect.com/science/article/pii/S2405896318314782
  45. Soto, C., B. Dorronsoro, H. Fraire, L. Cruz-Reyes, C. Gomez-Santillan, N. Rangel. Solving the Multi-Objective Flexible Job Shop Scheduling Problem with a Novel Parallel Branch and Bound Algorithm. – Swarm and Evolutionary Computation, Vol. 53, 2020, 100632. ISSN 2210-6502. DOI: 10.1016/j.swevo.2019.100632.
  46. Chen, X., J. Zhang. A Dynamic Programming Approach to Solving Flexible Job Shop Scheduling Problems. – Journal of Manufacturing Science and Engineering, Vol. 137, 2015, No 3, 031007. DOI: 10.1115/1.4029334.
  47. Liu, B., C. Lee. Dynamic Programming for Flexible Job Shop Scheduling with Machine Failure Considerations. – Computers & Operations Research, Vol. 92, 2018, pp. 26-37. DOI: 10.1016/j.cor.2017.08.009.
  48. Gupta, M., P. Jain. Dynamic Programming Approach for Multi-Objective Flexible Job Shop Scheduling. – Journal of Manufacturing Processes, Vol. 44, 2019, pp. 198-211. DOI: 10.1016/j.jmapro.2019.06.030.
  49. Yang, H., Q. Pan. An Enhanced Dynamic Programming Approach for Flexible Job Shop Scheduling Problem with Parallel Machines. – Computers & Industrial Engineering, Vol. 147, 2020, 106635. DOI: 10.1016/j.cie.2020.106635.
  50. Malika, B., H. Kalla. A Fault Tolerant Scheduling Heuristics for Distributed Real Time Embedded Systems. – Cybernetics and Information Technologies, Vol. 18, 2018, No 3, pp. 48-61.
  51. Azzouz, A., M. Enigrou, L. Ben Said. A Hybrid Heuristic Algorithm for Flexible Job-Shop Scheduling Problem with Setup Times. – International Journal of Production Management and Engineering, Vol. 5, 2017, No 1, pp. 53-61. DOI: 10.4995/ijpme.2017.6618.
  52. Ziaee, M. A Heuristic Algorithm for Solving Flexible Job Shop Scheduling Problem. – The International Journal of Advanced Manufacturing Technology, Vol. 71, 2014, pp. 519-528. DOI: 10.1007/s00170-013-5510-z.
  53. Campo, E. A., J. A. Cano, R. Gómez-Montoya, E. Rodríguez-Velásquez, P. Cortés. Flexible Job Shop Scheduling Problem with Fuzzy Times and Due-Windows: Minimizing Weighted Tardiness and Earliness Using Genetic Algorithms. – Algorithms, Vol. 15, 2022, No 10, 334. DOI: 10.3390/a15100334.
  54. Zhang, Y., Y. Li, X. Li. Dynamic Scheduling for Flexible Job Shop Based on MachineRank. – Scientific Reports, Vol. 14, 2024, 29741. DOI: 10.1038/s41598-024-79593-8.
  55. Liu, C.-L., T.-H. Huang, S. D. You. Scheduling for the Flexible Job-Shop Problem with a Dynamic Environment Using Deep Reinforcement Learning. – Information, Vol. 15, 2024, No 2, 82. DOI: 10.3390/info15020082.
  56. Infantes, G. Learning to Solve Job Shop Scheduling under Uncertainty. – arXiv:2404.01308v1, 2024. https://arxiv.org/html/2404.01308v1?utm_source=chatgpt.com
  57. Yuan, Y., H. Xu, M. Yang. A Modified Iterated Greedy Algorithm for Flexible Job Shop Scheduling Problem. – Chinese Journal of Mechanical Engineering, 2019. DOI: 10.1186/s10033-019-0337-7.
  58. Rezaeipanah, A., F. Sarhangnia, M. Abdollahi. A Meta-Heuristic Approach Based on the Genetic and Greedy Algorithms to Solving Flexible Job-Shop Scheduling Problem. – Computer Science, 2021. DOI: 10.7494/csci.2021.22.4.4130.
  59. Amjad, M. K., S. I. Butt, R. Kousar, R. Ahmad, M. H. Agha, Z. Faping, N. Anjum, U. Asgher. Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems. Wiley, Online Library, 2018. DOI: 10.1155/2018/9270802.
  60. Jiang, M., H. Yu, J. Chen. Improved Self-Learning Genetic Algorithm for Solving Flexible Job Shop Scheduling. – Mathematics, Vol. 11, 2023, No 22, 4700. DOI: 10.3390/math11224700.
  61. Luo, X., Q. Qian, Y. F. Fu. Improved Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem. – Procedia Computer Science, Vol. 166, 2020, pp. 480-485. DOI: 10.1016/j.procs.2020.02.061.
  62. Yazdani, E., P. Fattahi, M. Jolai. A Priority-Based Genetic Algorithm for a Flexible Job Shop Scheduling Problem. – Journal of Industrial and Management Optimization, 2016. DOI: 10.3934/jimo.2016.12.1391.
  63. Cruz-Chávez, M. A., M. G. Martínez-Rangel, M. H. Cruz-Rosales. Accelerated Simulated Annealing Algorithm Applied to the Flexible Job Shop Scheduling Problem. – International Transactions in Operational Research, Vol. 24, 2017, No 5, pp. 1119-1137. DOI: 10.1111/itor.12195.
  64. Zheng, Q.-Q., Y. Zhang, H.-W. Tian, L.-J. He. An Effective Hybrid Meta-Heuristic for Flexible Flow Shop Scheduling with Limited Buffers and Step-Deteriorating Jobs. – Engineering Applications of Artificial Intelligence, Vol. 106, 2021, 104503. ISSN 0952-1976. DOI: 10.1016/j.engappai.2021.104503.
  65. Lim, K. C. W., L.-P. Wong, J. F. Chin. Simulated-Annealing-Based Hyper-Heuristic for Flexible Job-Shop Scheduling. – Engineering Optimization, Vol. 55, 2023, No 10, pp. 1635-1651. DOI: 10.1080/0305215X.2022.2106477.
  66. Teekeng, W., A. Thammano, P. Unkaw, J. Kiatwuthiamorn. A New Algorithm for Flexible Job-Shop Scheduling Problem Based on Particle Swarm Optimization. – Artificial Life and Robotics, Vol. 21, 2016, pp. 18-23. DOI: 10.1007/s10015-015-0259-0.
  67. Nouiri, M., A. Bekrar, A. C. Ammari. An Effective and Distributed Particle Swarm Optimization Algorithm for Flexible Job-Shop Scheduling Problem. – Journal of Intelligent Manufacturing, 2018. DOI: 10.1007/s10845-015-1039-3.
  68. Liu, Z., J. Wang, C. Zhang, H. Chu, G. Ding, L. Zhang. A Hybrid Genetic-Particle Swarm Algorithm Based on Multilevel Neighbourhood Structure for Flexible Job Shop Scheduling Problem. – Computers and Operations Research, Vol. 135, 2021, Issue C. DOI: 10.1016/j.cor.2021.105431.
  69. Wang, L., J. Cai, M. Li, Z. Liu. Flexible Job Shop Scheduling Problem Using an Improved Ant Colony Optimization. – Scientific Programming, 2017. DOI: 10.1155/2017/9016303.
  70. Kalinowski, K., D. Krenczyk, I. Paprocka, W. M. Kempa, C. Grabowik. Ant Colony Optimisation for Scheduling of Flexible Job Shop with Multi- Resources Requirements. – MATEC Web of Conferences, 2017. DOI: 10.1051/matecconf/201711206018.
  71. Torres-Tapia, W., J. R. Montoya-Torres, J. Ruiz-Meza. A Hybrid Algorithm Based on Ant Colony System for Flexible Job Shop. – In: J. C. Figueroa-García, C. Franco, Y. Díaz-Gutierrez, G. Hernández-Pérez, Eds. Applied Computer Sciences in Engineering. WEA 2022. Part of the Book Series: Communications in Computer and Information Science. Vol. 1685. Cham, Springer, 2022. DOI: 10.1007/978-3-031-20611-5_17.
  72. Yan, S., G. Zhang, J. Sun, W. Zhang. An Improved Ant Colony Optimization for Solving the Flexible Job Shop Scheduling Problem with Multiple Time Constraints. – Mathematical Biosciences and Engineering, Vol. 20, 2023, No 4, pp. 7519-7547. DOI: 10.3934/mbe.2023325.
  73. Da Silva, A. R. Solving the Job Shop Scheduling Problem with Ant Colony Optimization. – arXiv:2209.05284, [cs.MA], 2022. DOI: 10.48550/arXiv.2209.05284.
  74. Wang, Y., Q. Zhu. A Hybrid Genetic Algorithm for Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times and Job Lag Times, July 2021. – IEEE Access, Vol. PP(99), 2021, pp. 1-1. DOI: 10.1109/ACCESS.2021.3096007.
  75. Li, X., L. Gao. An Effective Hybrid Genetic Algorithm and Tabu Search for Flexible Job Shop Scheduling Problem. – International Journal of Production Economics, Vol. 174, 2016, pp. 93-110. ISSN 0925-5273. DOI: 10.1016/j.ijpe.2016.01.016.
  76. Marzouki, B., O. B. Driss, L. Ghédira. Decentralized Tabu Searches in Multi Agent System for Distributed and Flexible Job Shop Scheduling Problem. – In: Proc. of 14th International Conference on Computer Systems and Applications IEEE/ACS (AICCSA’17), Hammamet, Tunisia, 2017, pp. 1019-1026. DOI: 10.1109/AICCSA.2017.133.
  77. Juvin, C., L. Houssin, P. Lopez. Hybrid Methods to Solve the Two-Stage Robust Flexible Job-Shop Scheduling Problem with Budgeted Uncertainty. – In: Proc. of 12th International Conference on Operations Research and Enterprise Systems (ICORES’23), 2023, pp. 135-142. ISBN: 978-989-758-627-9. ISSN: 2184-4372. DOI: 10.5220/0011619700003396.
  78. Shen, L., S. Dauzère-Pérès, J. S. Neufeld. Solving the Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times. – European Journal of Operational Research, Vol. 265, 2018, Issue 2, pp. 503-516. ISSN 0377-2217. DOI: 10.1016/j.ejor.2017.08.021.
  79. Zeng, B., L. Zhao. Solving Two-Stage Robust Optimization Problems by a Column-and-Constraint Generation Method. – Operations Research Letters, Vol. 45, 2013, No 5, pp. 457-461. DOI: 10.1016/j.orl.2013.05.003.
  80. Meng, L., W. Cheng, B. Zhang, W. Zou, P. Duan. A Novel Hybrid Algorithm of Genetic Algorithm, Variable Neighborhood Search and Constraint Programming for Distributed Flexible Job Shop Scheduling Problem. – International Journal of Industrial Engineering Computations, Vol. 15, 2024, Issue 3, pp. 813-832. DOI: 10.5267/j.ijiec.2024.3.001.
  81. Li, D., T. Zheng, J. Li, A. Teymourifar. A Hybrid Framework Integrating Machine-Learning and Mathematical Programming Approaches for Sustainable Scheduling of Flexible Job-Shop Problems. – Chemical Engineering Transactions, Vol. 103, 2023, pp. 385-390. DOI:10.3303/CET23103065.
  82. Thi, L. M., T. T. Mai Anh, N. Van Hop. An Improved Hybrid Metaheuristics and Rule-Based Approach for Flexible Job-Shop Scheduling Subject to Machine Breakdowns. – Engineering Optimization, Vol. 55, 2022, No 9, pp. 1535-1555. DOI: 10.1080/0305215X.2022.2098283.
  83. Wang, Y., B. van Stein, M. T. M. Emmerich, T. Bäck. A Tailored NSGA-III Instantiation for Flexible Job Shop Scheduling. – arXiv:2004.06564, 2020. DOI: 10.48550/arXiv.2004.06564.
  84. Lunardi, W. T., E. G. Birgin, D. P. Ronconi, H. Voos. Metaheuristics for the Online Printing Shop Scheduling Problem. – arXiv:2006.12344, 2020. DOI: 10.48550/arXiv.2006.12344.
  85. Borissova, D., I. Mustakerov. A Parallel Algorithm for Optimal Job Shop Scheduling of Semi-Constrained Details Processing on Multiple Machines. – In: Proc. of 18th Int. Conf. on Circuits, Systems, Communications and Computers (CSCC’14), Advanced Information Science and Applications – Vol. I, 17-21 July 2014, Santorini Island, Greece, pp. 145-150. ISBN: 978-1-61804-236-1
  86. Senthilkumar, M, P. Ilango. A Survey on Job Scheduling in Big Data. – Cybernetics and Information Technologies, Vol. 16, 2016, No 3, pp. 35-51.
  87. Zaidi, M., A. Amirat, B. Jarboui, A. Yahyaoui. A Hybrid Meta-Heuristic to Solve Flexible Job Shop Scheduling Problem. – In: I. Alharbi, C. E. Ben Ncir, B. Alyoubi, H. Ben-Romdhane, Eds. Advances in Computational Logistics and Supply Chain Analytics. Unsupervised and Semi-Supervised Learning. Springer, Cham. 2024. DOI: 10.1007/978-3-031-50036-7_4.
  88. Kaweewitbundit, P., T. Eguchi. Flexible Job Shop Scheduling Using Genetic Algorithm and Heuristic Rules. – Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 10, 2016, Issue 1. DOI: 10.1299/jamdsm.2016jamdsm0010.
  89. Tutumlu, B., T. Saraç. A MIP Model and a Hybrid Genetic Algorithm for Flexible Job-Shop Scheduling Problem with Job-Splitting. – Computers and Operations Research, Vol. 155, 2023, 106222. ISSN 0305-0548. DOI: 10.1016/j.cor.2023.106222.
  90. Çaliş, B., S. Bulkan. A Research Survey: Review of AI Solution Strategies of Job Shop Scheduling Problem. – Journal of Intelligent Manufacturing, Vol. 26, 2015, No 5, pp. 961-973.
  91. Echeverria, I., M. Murua, R. Santana. Solving the Flexible Job-Shop Scheduling Problem Through an Enhanced Deep Reinforcement Learning Approach. 2023. DOI: 10.48550/arXiv:2310.15706.
  92. Feng, Y., L. Zhang, Z. Yang, Y. Guo, D. Yang. Flexible Job Shop Scheduling Based on Deep Reinforcement Learning. – In: Proc. of 5th Asian Conference on Artificial Intelligence Technology (ACAIT’21), Haikou, China, 2021, pp. 660-666. DOI: 10.1109/ACAIT53529.2021.9731322.
  93. Wang, R., G. Wang, J. Sun, F. Deng, J. Chen. Flexible Job Shop Scheduling via Dual Attention Network Based Reinforcement Learning. – arXiv:2305.05119 [cs.LG], 2023. DOI: 10.48550/arXiv.2305.05119.
  94. Echeverria, I., M. Murua, R. Santana. Leveraging Constraint Programming in a Deep Learning Approach for Dynamically Solving the Flexible Job-Shop Scheduling Problem. – arXiv:2403.09249 [cs.AI], 2024. DOI: 10.48550/arXiv.2403.09249.
  95. Tremblet, D., S. Thevenin, A. Dolgui. Makespan Estimation in a Flexible Job-Shop Scheduling Environment Using Machine Learning. – International Journal of Production Research, 2024. DOI: 10.1080/00207543.2023.2245918.
  96. Huang, X., Z. Guan, L. Yang. An Effective Hybrid Algorithm for Multi-Objective Flexible Job-Shop Scheduling Problem. – Advances in Mechanical Engineering, Vol. 10, 2018, No 9. DOI: 10.1177/1687814018801442.
  97. Li, J., H. Li, P. He, L. Xu, K. He, S. Liu. Flexible Job Shop Scheduling Optimization for Green Manufacturing Based on Improved Multi-Objective Wolf Pack Algorithm. – Applied Sciences, Vol. 13, 2023, No 14, 8535. DOI: 10.3390/app13148535.
  98. Thenarasu, M., K. Rameshkumar, M. di Mascolo, S. P. Anbuudayasankar. Multi-Criteria Scheduling of Realistic Flexible Job Shop: A Novel Approach for Integrating Simulation Modelling and Multi-Criteria Decision Making. – International Journal of Production Research, 2023, pp. 1-23. DOI: 10.1080/00207543.2023.2238084, hal-04176568. https://hal.science/hal-04176568/document
  99. Tao, N., J. Hua. A Cloud-Based Improved Method for Multi-Objective Flexible Job-Shop Scheduling Problem. – Journal of Intelligent & Fuzzy Systems, Vol. 35, 2018, No 1, pp. 823-829. DOI: 10.3233/JIFS-171391.
  100. Fu, K., J. Liu, M. Chen. Solving Flexible Job-Shop Scheduling Problems Based on Quantum Computing. – Entropy, Vol. 27, 2025, No 2, 189. DOI: 10.3390/e27020189.
  101. Xue, L., S. Zhao, A. Mahmoudi et al. Flexible Job-Shop Scheduling Problem with Parallel Batch Machines Based on an Enhanced Multi-Population Genetic Algorithm. – Complex Intelligent Systems, Vol. 10, 2024, pp. 4083-4101. DOI: 10.1007/s40747-024-01374-7.
  102. Luo, J., D. El Baz. A Dual Heterogeneous Island Genetic Algorithm for Solving Large Size Flexible Flow Shop Scheduling Problems on Hybrid Multi-Core CPU and GPU Platforms. – arXiv:1903.10722 [cs.DC], 2019. DOI: 10.48550/arXiv.1903.10722.
  103. Luo, J., S. Fujimura, D. El Baz. GPU Based Parallel Genetic Algorithm for Solving an Energy Efficient Dynamic Flexible Flow Shop Scheduling Problem. – arXiv:1903.10741 [cs.DC], 2019. DOI: 10.48550/arXiv.1903.10741.
  104. Kubiak, W., Y. Feng, G. Li, S. P. Sethi, C. Sriskandarajah. Efficient Algorithms for Flexible Job Shop Scheduling with Parallel Machines. – Naval Research Logistics, Vol. 67, 2020, No 4, pp. 272-288. DOI: 10.1002/nav.21901.
  105. Fuladi, S. K., C.-S. Kim. Dynamic Events in the Flexible Job-Shop Scheduling Problem: Rescheduling with a Hybrid Metaheuristic Algorithm. – Algorithms, Vol. 17, 2024, No 4, 142. DOI: 10.3390/a17040142.
  106. Chen, X., J. Li, Z. Wang, Q. Chen, K. Gao, Q. Pan. Optimizing Dynamic Flexible Job Shop Scheduling Using an Evolutionary Multi-Task Optimization Framework and Genetic Programming. – In: IEEE Transactions on Evolutionary Computation, 2023. DOI: 10.1109/TEVC.2025.3543770.
  107. Liu, R., R. Piplani, C. Toro. Deep Reinforcement Learning for Dynamic Scheduling of a Flexible Job Shop. 2022. https://ideas.repec.org/a/taf/tprsxx/v60y2022i13p4049-4069.html
  108. Kim, M.-S., et al. A Dynamic Programming-Based Heuristic Algorithm for a Flexible Job Shop Scheduling Problem of a Matrix System in Automotive Industry. – In: Proc. of 18th IEEE International Conference on Automation Science and Engineering (CASE’22), Mexico City, Mexico, 2022, pp. 777-782. DOI: 10.1109/CASE49997.2022.9926440.
  109. Zhang, C., Y. Zhou, K. Peng, X. Li, K. Lian, S. Zhang. Dynamic Flexible Job Shop Scheduling Method Based on Improved Gene Expression Programming. – Measurement and Control, Vol. 54, 2021, No 7-8, pp. 1136-1146. DOI: 10.1177/0020294020946352.
  110. Ozturk, G., O. Bahadir, A. Teymourifar. Extracting Priority Rules for Dynamic Multi-Objective Flexible Job Shop Scheduling Problems Using Gene Expression Programming. – International Journal of Production Research, Vol. 57, 2019, No 10, pp. 3121-3137.
DOI: https://doi.org/10.2478/cait-2025-0009 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 3 - 30
Submitted on: Jan 28, 2025
Accepted on: Mar 7, 2025
Published on: Jun 25, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Vassil Guliashki, Leoneed Kirilov, Galia Marinova, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.