Have a personal or library account? Click to login
Federated Learning and Blockchain-Based Collaborative Framework for Real-Time Wild Life Monitoring Cover

Federated Learning and Blockchain-Based Collaborative Framework for Real-Time Wild Life Monitoring

Open Access
|Mar 2025

References

  1. Delplanque, A., R. Lamprey, S. Foucher, J. Theau, P. Lejeune. Surveying Wildlife and Livestock in Uganda with Aerial Cameras: Deep Learning Reduces the Workload of Human Interpretation by over 70%. – Frontiers in Ecology and Evolution, Vol. <bold>11</bold>, 2023, 1270857.
  2. Wood, C. M., A. B. Cruz, S. Kahl. Pairing a User‐Friendly Machine‐Learning Animal Sound Detector with Passive Acoustic Surveys for Occupancy Modeling of an Endangered Primate. – American Journal of Primatology, Vol. <bold>85</bold>, 2023, No 8, e23507.
  3. Tanzib, H. M., A. Zaman, M. R. Abir, S. Akter, S. Mursalin, S. S. Khan. Synchronizing Object Detection: Applications, Advancements, and Existing Challenges. – IEEE Access, 2024.
  4. Shinichi, N., L. Malgorzata, F. Roxane, T. Jessica, L. Xun, E. Andrew, J. R. Neil, O’Brien K. Justine, P. J. Benjamin, V. S. Monique, S. Arcot, K. T. Richard. Rapid Literature Mapping on the Recent Use of Machine Learning for Wildlife Imagery. – Peer Community Journal, Vol. <bold>3</bold>, 2023.
  5. Aguilar-Lazcano, C. A., I. E. Espinosa-Curiel, J. A. Ríos-Martínez, F. A. Madera-Ramírez, H. Pérez-Espinosa. Machine Learning-Based Sensor Data Fusion for Animal Monitoring: A Scoping Review. – Sensors, Vol. <bold>23</bold>, 2023, No 12, 5732.
  6. Popek, Ł., R. Perz, G. Galiński. Comparison of Different Methods of Animal Detection and Recognition on Thermal Camera Images. – Electronics, Vol. <bold>12</bold>, 2023, No 2, 270.
  7. Jeantet, L., E. Dufourq. Improving Deep Learning Acoustic Classifiers with Contextual Information for Wildlife Monitoring. – Ecological Informatics, Vol. <bold>77</bold>, 2023, 102256.
  8. Binta Islam, S., D. Valles, T. J. Hibbitts, W. A. Ryberg, D. K. Walkup, M. R. Forstner. Animal Species Recognition with Deep Convolutional Neural Networks from Ecological Camera Trap Images. – Animals, Vol. <bold>13</bold>, 2023, No 9, 1526.
  9. Rančić, K., B. Blagojević, A. Bezdan, B. Ivošević, B. Tubić, M. Vranešević, B. Pejak, V. Crnojević, O. Marko. Animal Detection and Counting from UAV Images Using Convolutional Neural Networks. – Drones, Vol. <bold>7</bold>, 2023, No 3, 179.
  10. Delplanque, A., S. Foucher, J. Théau, E. Bussière, C. Vermeulen, P. Lejeune. From Crowd to Herd Counting: How to Precisely Detect and Count African Mammals Using Aerial Imagery and Deep Learning? – ISPRS Journal of Photogrammetry and Remote Sensing, Vol. <bold>197</bold>, 2023, pp. 167-180.
  11. Sharma, S., K. Sato, B. P. Gautam. A Methodological Literature Review of Acoustic Wildlife Monitoring Using Artificial Intelligence Tools and Techniques. – Sustainability, Vol. <bold>15</bold>, 2023, No 9, 7128.
  12. Mou, C., A. Liang, C. Hu, F. Meng, B. Han, F. Xu. Monitoring Endangered and Rare Wildlife in the Field: A Foundation Deep Learning Model Integrating Human Knowledge for Incremental Recognition with Few Data and Low Cost. – Animals, Vol. <bold>13</bold>, 2023, No 20, 3168.
  13. Ibraheam, M., K. F. Li, F. Gebali. An Accurate and Fast Animal Species Detection System for Embedded Devices. – IEEE Access, Vol. <bold>11</bold>, 2023, pp. 23462-23473.
  14. Simões, F., C. Bouveyron, F. Precioso. DeepWILD: Wildlife Identification, Localisation and Estimation on Camera Trap Videos Using Deep Learning. – Ecological Informatics, Vol. <bold>75</bold>, 2023, 102095.
  15. Roy, A. M., J. Bhaduri, T. Kumar, K. Raj. WilDect-YOLO: An Efficient and Robust Computer Vision-Based Accurate Object Localization Model for Automated Endangered Wildlife Detection. – Ecological Informatics, Vol. <bold>75</bold>, 2023, 101919.
  16. Ravi, G., S. Afroz, K. Yamuna, S. Afsha. CNN Based Wildlife Intrusion Detection and Alert System. – International Transactions on Electrical Engineering and Computer Science, Vol. <bold>2</bold>, 2023, No 1, pp. 30-36.
  17. Schindler, F., V. Steinhage, S. T. van Beeck Calkoen, M. Heurich. Action Detection for Wildlife Monitoring with Camera Traps Based on Segmentation with Filtering of Trackless (SWIFT) and Mask-Guided Action Recognition (MAROON). – Applied Sciences, Vol. <bold>14</bold>, 2024, No 2, 514.
  18. Samreen, S., L. Akhila, R. Ravali, K. Akshitha. Developing Hybrid Deep Neural Networks for Detecting the Movement of Wild Animals and Generating Alarm Messages. – International Journal of Computing and Artificial Intelligence, Vol. <bold>5</bold>, 2024, No 2, pp. 119-123.
  19. Velasco-Montero, D., J. Fernández-Berni, R. Carmona-Galán, A. Sanglas, F. Palomares. Reliable and Efficient Integration of AI into Camera Traps for Smart Wildlife Monitoring Based on Continual Learning. – Ecological Informatics, Vol. <bold>83</bold>, 2024, 102815.
  20. Kalbhor, M., S. Shinde, D. E. Popescu, D. J. Hemanth. Hybridization of Deep Learning Pre-Trained Models with Machine Learning Classifiers and Fuzzy Min-Max Neural Network for Cervical Cancer Diagnosis. – Diagnostics, Vol. <bold>13</bold>, 2023, No 7, 1363.
  21. Lalinia, M., A. Sahafi. Colorectal Polyp Detection in Colonoscopy Images Using YOLO-V8 Network. – Signal, Image, and Video Processing, Vol. <bold>18</bold>, 2024, No 3, pp. 2047-2058.
  22. Zhang, Y., Z. Lu, F. Zhang, H. Wang, S. Li. Machine Unlearning by Reversing the Continual Learning. – Applied Sciences, Vol. <bold>13</bold>, 2023, No 16, 9341.
  23. Lazzarini, R., H. Tianfield, V. Charissis. Federated Learning for IoT Intrusion Detection. – AI, 2023, No 4, pp. 509-530.
  24. Dahou, A., A. O. Aseeri, A. Mabrouk, R. A. Ibrahim, M. A. Al-Betar, M. A. Elaziz. Optimal Skin Cancer Detection Model Using Transfer Learning and Dynamic-Opposite Hunger Games Search. – Diagnostics, 2023, No 13, 1579.
  25. Kollu, V. N., V. Janarthanan, M. Karupusamy, M. Ramachandran. Cloud-Based Smart Contract Analysis in FinTech Using IoT-Integrated Federated Learning in Intrusion Detection. – Data, 2023, No 8, 83.
  26. Zhu, J., J. Cao, D. Saxena, S. Jiang, H. Ferradi. Blockchain-Empowered Federated Learning: Challenges, Solutions, and Future Directions. – ACM Computing Surveys, Vol. <bold>55</bold>, 2023, No 11, pp. 1-31.
DOI: https://doi.org/10.2478/cait-2025-0002 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 19 - 35
Submitted on: Nov 7, 2024
Accepted on: Dec 17, 2024
Published on: Mar 21, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Preetha Jagannathan, Kalaivanan Saravanan, Subramaniyam Deepajothi, Sharmila Vadivel, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.