References
- Bavelas, J. B. The Social Life of Hand Gestures. – In: Face-to-Face Dialogue: Theory, Research, and Applications. Oxford Academic, 2022.
- Athavale, S., M. Deshmukh. Dynamic Hand Gesture Recognition for Human-Computer Interaction. A Comparative Study. – International Journal of Engineering Research and General Science, Vol. 2, 2014, No 2, pp. 38-55.
- Baumgartl, H., D. Sauter, C. Schenk, C. Atik, R. Buettner. Vision-Based Hand Gesture Recognition for Human-Computer Interaction Using Mobile Net V2. – In: Proc. of 45th IEEE Annual Computers, Software, and Applications Conference (COMPSAC’21), IEEE, 2021, pp. 1667-1674.
- Griffiths, D., J. Boehm. A Review on Deep Learning Techniques for 3D Sensed Data Classification. – Remote Sensing, Vol. 11, 2019, No 12, 1499.
- Dhande, A., S. Mantri, H. Pande. Comparative Analysis of Human Hand Gesture Recognition in Real-Time Healthcare Applications. – In: Proc. of International Conference on Expert Clouds and Applications, Springer, Singapore, 2022, pp. 461-475.
- Ameur, S., A. B. Khalifa, M. S. Bouhlel. A Novel Hybrid Bidirectional Unidirectional LSTM Network for Dynamic Hand Gesture Recognition with Leap Motion. – Entertainment Computing, Vol. 35, 2020, 100373.
- Han, D., B. Mulyana, V. Stankovic, S. Cheng. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation. – Sensors, Vol. 23, 2023, No 7, 3762.
- Wu, J., P. Ren, B. Song, R. Zhang, C. Zhao, X. Zhang. Data Glove-Based Gesture Recognition Using CNN-BiLSTM Model with Attention Mechanism. – Plos One, Vol. 18, 2023, No 11, e0294174.
- Jiang, S., B. Lv, W. Guo, C. Zhang, H. Wang, X. Sheng, P. B. Shull. Feasibility of Wrist-Worn, Real-Time Hand, and Surface Gesture Recognition via sEMG and IMU Sensing. – IEEE Transactions on Industrial Informatics, Vol. 14, 2017, No 8, pp. 3376-3385.
- Chen, X., Y. Li, R. Hu, X. Zhang, X. Chen. Hand Gesture Recognition Based on Surface Electromyography Using Convolutional Neural Network with Transfer Learning Method. – IEEE Journal of Biomedical and Health Informatics, Vol. 25, 2020, No 4, pp. 1292-1304.
- Jaramillo-Yánez, A., M. E. Benalcázar, E. Mena-Maldonado. Real-Time Hand Gesture Recognition Using Surface Electromyography and Machine Learning: A Systematic Literature Review. – Sensors, Vol. 20, 2020, No 9, 2467.
- Choi, J. W., S. J. Ryu, J. H. Kim. Short-Range Radar Based Real-Time Hand Gesture Recognition Using LSTM Encoder. – IEEE Access, Vol. 7, 2019, pp. 33610-33618.
- Dang, L. M., K. Min, H. Wang, M. J. Piran, C. H. Lee, H. Moon. Sensor-Based and Vision-Based Human Activity Recognition: A Comprehensive Survey. – Pattern Recognition, Vol. 108, 2020, 107561.
- De, O. P., S. Mukherjee, S. Nandy, T. Chakraborty, S. Saha. Computer Vision Based Framework for Digit Recognition by Hand Gesture Analysis. – In: Proc. of 7th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON’16), IEEE, 2016, pp. 1-5.
- Gupta, A., S. Kumar. Review for Optimal Human-Gesture Design Methodology and Motion Representation of Medical Images Using Segmentation from Depth Data and Gesture Recognition. – Current Medical Imaging, Vol. 20, 2024.
- Leon, D. G., J. Gröli, S. R. Yeduri, D. Rossier, R. Mosqueron, O. J. Pandey, L. R. Cenkeramaddi. Video Hand Gestures Recognition Using Depth Camera and Lightweight CNN. – IEEE Sensors Journal, Vol. 22, 2022, No 14, pp. 14610-14619.
- Dosovitskiy, A., et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. – arXiv preprint arXiv:2010.11929, 2020.
- Ewe, E. L., C. P. Lee, L. C. Kwek, K. M. Lim. Hand Gesture Recognition via Lightweight VGG16 and Ensemble Classifier. – Applied Sciences, Vol. 12, 2022, No 15, 7643.
- Mukthineni, V., R. Mukthineni, O. Sharma, S. Jamjala Narayanan. Face Authenticated Hand Gesture Based Human Computer Interaction for Desktops. – Cybernetics and Information Technologies, Vol. 20, 2020, No 4, pp. 74-89.
- Nguyen, T. N., H. H. Huynh, J. Meunier. Static Hand Gesture Recognition Using Artificial Neural Network. – Journal of Image and Graphics, Vol. 1, 2013, No 1, pp. 34-38.
- Köpüklü, O., A. Gunduz, N. Kose, G. Rigoll. Real-Time Hand Gesture Detection and Classification Using Convolutional Neural Networks. – In: Proc. of 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG’2019), IEEE, 2019, pp. 1-8.
- Lei, Q., H. Zhang, Z. Xia, Y. Yang, Y. He, S. Liu. Applications of Hand Gestures Recognition in Industrial Robots: A Review. – In: Proc. of 11th International Conference on Machine Vision (ICMV’2018), SPIE, Vol. 11041, 2019, pp. 455-465.
- Siriak, R., I. Skarga-Bandurova, Y. Boltov. Deep Convolutional Network with Long Short-Term Memory Layers for Dynamic Gesture Recognition. – In: Proc. of 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’19), IEEE, 2019, pp. 158-162.
- Alonso, D. G., A. Teyseyre, L. Berdun, S. Schiaffino. A Deep Learning Approach for Hybrid Hand Gesture Recognition. – In: Proc. of 18th Mexican International Conference on Artificial Intelligence (MICAI’2019), Advances in Soft Computing, Xalapa, Mexico, 27 October – 2 November 2019, Proceedings 18, Springer International Publishing, 2019, pp. 87-99.
- Abdulrazzaq, H. I., N. F. Hassan. Modified Siamese Convolutional Neural Network for Fusion Multimodal Biometrics at Feature Level. – In: Proc. of 2nd Scientific Conference of Computer Sciences (SCCS’19), IEEE, 2019, pp. 12-17.
- Yasen, M., S. Jusoh. A Systematic Review on Hand Gesture Recognition Techniques, Challenges and Applications. – PeerJ Computer Science, Vol. 5, 2019, e218.
- Bhuvanya, R., M. Kavitha. Image Clustering and Feature Extraction by Utilizing an Improvised Unsupervised Learning Approach. – Cybernetics and Information Technologies, Vol. 23, 2023, No 2, pp. 3-19.
- Moin, A., A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov, J. M. Rabaey. A Wearable Biosensing System with In-Sensor Adaptive Machine Learning for Hand Gesture Recognition. – Nature Electronics, Vol. 4, 2021, No 1, pp. 54-63.
- Si, G., Z. Gu, H. Zheng. Duet of ViT and CNN: Multi-Scale Dual-Branch Network for Fine-Grained Image Classification of Marine Organisms. – Intelligent Marine Technology and Systems, Vol. 2, 2024, No 1.
- Haq, M. A., M. Ridlwan, I. Naila. Leveraging Self-Attention Mechanism for Deep Learning in Hand-Gesture Recognition System. – In: E3S Web of Conferences. Vol. 500. 2024.
- Kumaran, N., M. S. Anurag, M. Sampath. Hand Gesture Recognition Using Transfer Learning Techniques. – Journal of Current Research in Engineering and Science (JCRES), Vol. 4, 2021, No 1.
- Rong, Y., G. Gu. Deep Transfer Learning-Based Adaptive Gesture Recognition of a Soft e-Skin Patch with Reduced Training Data and Time. – Sensors and Actuators. A: Physical, Vol. 363, 2023, 114693.
- Ageishi, N., F. Tomohide, A. B. Abdallah. Real-Time Hand-Gesture Recognition Based on Deep Neural Network. – In: SHS Web of Conferences. EDP Sciences, 2021, 04009.
- Obaida, T. H., A. S. Jamil, N. F. Hassan. Real-Time Face Detection in Digital Video-Based on Viola-Jones Supported by Convolutional Neural Networks. – International Journal of Electrical and Computer Engineering (IJECE), Vol. 12, 2022, No 3, pp. 3083-3091.
- Molchanov, P., X. Yang, S. Gupta, K. Kim, S. Tyree, J. Kautz. Online Detection and Classification of Dynamic Hand Gestures with Recurrent 3D Convolutional Neural Network. – In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4207-4215.
- Huang, J., W. Zhou, H. Li, W. Li. Attention-Based 3D-CNNs for Large-Vocabulary Sign Language Recognition. – IEEE Transactions on Circuits and Systems for Video Technology, Vol. 29, 2018, No 9, pp. 2822-2832.
- Zhang, Y., L. Shi, Y. Wu, K. Cheng, J. Cheng, H. Lu. Gesture Recognition Based on Deep Deformable 3D Convolutional Neural Networks. – Pattern Recognition, Vol. 107, 2020, 107416.
- Long, D. T. Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition. – Cybernetics and Information Technologies, Vol. 24, 2024, No 1, pp. 171-189.
- Sutskever, I., O. Vinyals, Q. V. Le. Sequence to Sequence Learning with Neural Networks. – Advances in Neural Information Processing Systems, Vol. 27, 2014.
- Ordóñez, F. J., D. Roggen. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. – Sensors, Vol. 16, 2016, No 1, 115.
- Mittal, A., P. Kumar, P. P. Roy, R. Balasubramanian, B. B. Chaudhuri. A Modified LSTM Model for Continuous Sign Language Recognition Using Leap Motion. – IEEE Sensors Journal, Vol. 19, 2019, No 16, pp. 7056-7063.
- Tan, C. K., K. M. Lim, R. K. Chang, C. P. Lee, A. Alqahtani. HGR-ViT: Hand Gesture Recognition with Vision Transformer. – Sensors, Vol. 23, 2023, No 12, 5555.
- Xie, Z., Y. Lin, Z. Yao, Z. Zhang, Q. Dai, Y. Cao, H. Hu. Self-Supervised Learning with Swin Transformers. – arXiv e-prints, arXiv:2105.04553, 2021.
- Tavakoli, M., C. Benussi, P. A. Lopes, L. B. Osorio, A. T. de Almeida. Robust Hand Gesture Recognition with a Double Channel Surface EMG Wearable Armband and SVM Classifier. – Biomedical Signal Processing and Control, Vol. 46, 2018, pp. 121-130.
- Verma, B., A. Choudhary. Unsupervised Learning Based Static Hand Gesture Recognition from RGB-D Sensor. – In: Proc. of 8th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016), Springer International Publishing, 2018, pp. 304-314.
- Zhang, Y., Y. Chen, H. Yu, X. Yang, R. Sun, B. Zeng. A Feature Adaptive Learning Method for High-Density Semg-Based Gesture Recognition. – Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 5, 2021, No 1, pp. 1-26.
- Sarma, D., M. K. Bhuyan. Methods, Databases and Recent Advancement of Vision-Based Hand Gesture Recognition for Hci Systems: A Review. – SN Computer Science, Vol. 2, 2021, No 6, 436.
- Jiang, S., P. Kang, X. Song, B. P. Lo, P. B. Shull. Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey. – IEEE Reviews in Biomedical Engineering, Vol. 15, 2021, pp. 85-102.
- Pyun, K. R., et al. Machine-Learned Wearable Sensors for Real-Time Hand-Motion Recognition: toward Practical Applications. – National Science Review, Vol. 11, 2024, No 2, nwad298.
- Kaur, H., J. Rani. A Review: Study of Various Techniques of Hand Gesture Recognition. – In: Proc. of 1st IEEE International Conference on Power Electronics, Intelligent Control, and Energy Systems (ICPEICES’16), IEEE, 2016, pp. 1-5.
- Wang, F., R. Hu, Y. Jin. Research on Gesture Image Recognition Method Based on Transfer Learning. – Procedia Computer Science, Vol. 187, 2021, pp. 140-145.
- Saiful Islam, M., W. Rahman, A. Abdelkader, P. T. Yang, S. Lee, J. L. Adams, E. Hoque. Using AI to Measure Parkinson’s Disease Severity at Home. – arXiv e-prints, arXiv-2303, 2023.
- Sikkandar, M. Y. Design a Contactless Authentication System Using Hand Gestures Technique in COVID-19 Panic Situation. – Annals of the Romanian Society for Cell Biology, 2021, pp. 2149-2159.
- Rautaray, S. S., A. Agrawal. Vision Based Hand Gesture Recognition for Human Computer Interaction: A Survey. – Artificial Intelligence Review, Vol. 43, 2015, pp. 1-54.
- Satybaldina, D., G. Kalymova. Deep Learning Based Static Hand Gesture Recognition. – Indonesian Journal of Electrical Engineering and Computer Science, Vol. 21, 2021, No 1, pp. 398-405.
- Zhu, G., L. Zhang, P. Shen, J. Song. Multimodal Gesture Recognition Using 3-D Convolution and Convolutional LSTM. – IEEE Access, Vol. 5, 2017, pp. 4517-4524.
- Al-Dori, A. S. M., J. M. Kadhim. Touchscreen-Based Smartphone Continuous Authentication System (SCAS) Using Deep Neural Network. – Turkish Journal of Computer and Mathematics Education, Vol. 12, 2021, No 11, pp. 2382-2391.
- Ketan Chakraborty, B., D. Sarma, M. K. Bhuyan, K. F. MacDorman. Review of Constraints on Vision-Based Gesture Recognition for Human-Computer Interaction. – IET Computer Vision (Wiley-Blackwell), Vol. 12, 2018, No 1.
- Lai, B. W., C. C. Li, E. Jeng. Dual-Handed Dynamic Gesture Recognition Using Inertial Sensors. – In: Proc. of 3rd IEEE International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB’23), IEEE, 2023, pp. 223-225.
- Rastgoo, R., K. Kiani, S. Escalera. Hand Sign Language Recognition Using Multi-View Hand Skeleton. – Expert Systems with Applications, Vol. 150, 2020, 113336.
- Bambach, S., S. Lee, D. J. Crandall, C. Yu. Lending a Hand: Detecting Hands and Recognizing Activities in Complex Egocentric Interactions. – In: Proc. of IEEE International Conference on Computer Vision, IEEE, 2015, pp. 1949-1957.
- Zeng, W., C. Wang, Q. Wang. Hand Gesture Recognition Using Leap Motion via Deterministic Learning. – Multimedia Tools and Applications, Vol. 77, 2018, pp. 28185-206.
- Kumaran, N., M. S. Anurag, M. Sampath. Hand Gesture Recognition Using Transfer Learning Techniques. – Journal of Current Research in Engineering and Science (JCRES), Vol. 4, 2021, No 1.
- Obaida, T. H., N. F. Hassan, A. S. Jamil. Comparative of Viola-Jones and YOLO V3 for Face Detection in Real Time. – Iraqi Journal of Computers, Communications, Control & Systems Engineering, Vol. 22, 2022, No 2, pp. 63-72.
- Zhang, Y., C. Cao, J. Cheng, H. Lu. EgoGesture: A New Dataset and Benchmark for Egocentric Hand Gesture Recognition. – IEEE Transactions on Multimedia, Vol. 20, 2018, No 5, pp. 1038-1050.
- Miah, A. S. M., M. A. M. Hasan, Y. Tomioka, J. Shin. Hand Gesture Recognition for Multi-Culture Sign Language Using Graph and General Deep Learning Network. – IEEE Open Journal of the Computer Society, Vol. 5, 2024, pp. 144-155.
