Have a personal or library account? Click to login
Energy-Efficient and Accelerated Resource Allocation in O-RAN Slicing Using Deep Reinforcement Learning and Transfer Learning Cover

Energy-Efficient and Accelerated Resource Allocation in O-RAN Slicing Using Deep Reinforcement Learning and Transfer Learning

Open Access
|Sep 2024

References

  1. Ghosh, A., A. Maeder, M. Baker, D. Chandramouli. 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. – IEEE Access, Vol. 7, 2019, pp. 127639-127651. DOI: 10.1109/access.2019.2939938.
  2. Zong, B., C. Fan, X. Wang, X. Duan, B. Wang, J. Wang. 6G Technologies: Key Drivers, Core Requirements, System Architectures, and Enabling Technologies. – IEEE Vehicular Technology Magazine, Vol. 14, 2019, No 3, pp. 18-27. DOI: 10.1109/mvt.2019.2921398.
  3. Singh, S. K., R. Singh, B. Kumbhani. The Evolution of Radio Access Network towards Open-RAN: Challenges and Opportunities. – In: Proc. of IEEE Wireless Communications and Networking Conference Workshops (WCNCW’20), IEEE, Korea, 2020, pp. 1-6. DOI: 10.1109/wcncw48565.2020.9124820.
  4. Abdalla, A. S., P. S. Upadhyaya, V. K. Shah, V. Marojevic. Toward Next Generation Open Radio Access Networks: What O-RAN Can and Cannot Do! – IEEE Network, Vol. 36, 2022, No 6, pp. 206-213. DOI: 10.1109/mnet.108.2100659.
  5. Saad, W., M. Bennis, M. Chen. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. – IEEE Network, Vol. 34, 2019, No 3, pp. 134-142. DOI: 10.1109/mnet.001.1900287.
  6. Azariah, W., F. A. Bimo, C. W. Lin, R. G. Cheng, N. Nikaein, R. Jana. A Survey on Open Radio Access Networks: Challenges, Research Directions, and Open Source Approaches. – Sensors, Vol. 24, 2024, No 3, p. 1038. DOI: 10.3390/s24031038.
  7. Liyanage, M., A. Braeken, S. Shahabuddin, P. Ranaweera. Open RAN Security: Challenges and Opportunities. – Journal of Network and Computer Applications, Vol. 214, 2023, p. 103621. DOI: 10.1016/j.jnca.2023.103621.
  8. Polese, M., L. Bonati, S. D’oro, S. Basagni, T. Melodia. Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges. – IEEE Communications Surveys & Tutorials, Vol. 25, 2023, No 2, pp. 1376-1411. DOI: 10.1109/comst.2023.3239220.
  9. Parvez, I., A. Rahmati, I. Guvenc, A. I. Sarwat, H., H. Dai. A Survey on Low Latency towards 5G: RAN, Core Network and Caching Solutions. – IEEE Communications Surveys & Tutorials, Vol. 20, 2018, No 4, pp. 3098-3130. DOI: 10.1109/comst.2018.2841349.
  10. Abeta, S., T. Kawahara, A. Umesh, R. Matsukawa. O-RAN Alliance Standardization Trends. – NTT DOCOMO Technical Journal, Vol. 21, 2019, No 1, pp. 38-45.
  11. Hamdan, M. Q., H. Lee, D. Triantafyllopoulou, R. Borralho, A. Kose, E. Amiri, D. Mulvey, W. Yu, R. Zitouni, R. Pozza, B. Hunt. Recent Advances in Machine Learning for Network Automation in the O-RAN. – Sensors, Vol. 23, 2023, No 21, p. 8792. DOI: 10.3390/s23218792.
  12. Brik, B., K. Boutiba, A. Ksentini. Deep Learning for B5G Open Radio Access Network: Evolution, Survey, Case Studies, and Challenges. – IEEE Open Journal of the Communications Society, Vol. 3, 2022, pp. 228-250. DOI: 10.1109/ojcoms.2022.3146618.
  13. Bonati, L., M. Polese, S. D’Oro, S. Basagni, T. Melodia. Intelligent Closed-Loop RAN Control with xApps in OpenRAN Gym. – In: Proc. of 27th European Wireless Conference, Germany, 2022, pp. 1-6.
  14. Feriani, A., E. Hossain. Single and Multi-Agent Deep Reinforcement Learning for AI-Enabled Wireless Networks: A Tutorial. – IEEE Communications Surveys & Tutorials, Vol. 23, 2021, No 2, pp. 1226-1252. DOI: 10.1109/comst.2021.3063822.
  15. Zhu, Z., K. Lin, A. K. Jain, J. Zhou. Transfer Learning in Deep Reinforcement Learning: A Survey. – IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, 2023, No 11, pp. 13344-13362. DOI: 10.1109/TPAMI.2023.3292075.
  16. Henderson, P., J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, J. Pineau. Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning. – Journal of Machine Learning Research, Vol. 21, 2020, pp. 1-43.
  17. Nagib, A. M., H. Abou-zeid, H. S. Hassanein. Toward Safe and Accelerated Deep Reinforcement Learning for Next-Generation Wireless Networks. – IEEE Network, Vol. 37, 2022, No 2, pp. 182-189. DOI: 10.1109/mnet.106.2100578.
  18. Nagib, A. M., H. Abou-zeid, H. S. Hassanein. Safe and Accelerated Deep Reinforcement Learning-Based O-RAN Slicing: A Hybrid Transfer Learning Approach. – IEEE Journal on Selected Areas in Communications, Vol. 42, 2023, No 2, pp. 310-325. DOI: 10.1109/jsac.2023.3336191.
  19. Wang, T. H., Y. C. Chen, S. J. Huang, K. S. Hsu, C. H. Hu. Design of a Network Management System for 5G Open RAN. – In: Proc. of IEEE Asia-Pacific Network Operations and Management Symposium (APNOMS’21), IEEE, Taiwan, 2021, pp. 138-141. DOI: 10.23919/apnoms52696.2021.9562627.
  20. Wypiór, D., M. Klinkowski, I. Michalski. Open RAN-Radio Access Network Evolution, Benefits, and Market Trends. – Applied Sciences, Vol. 12, 2022, No 1, p. 408. DOI: 10.3390/app12010408.
  21. Orhan, O., V. N. Swamy, T. Tetzlaff, M. Nassar, H. Nikopour, S. Talwar. Connection Management xAPP for O-RAN RIC: A Graph Neural Network and Reinforcement Learning Approach. – In: Proc. of IEEE International Conference on Machine Learning and Applications (ICMLA’21), IEEE, USA, 2021, pp. 936-941. DOI: 10.1109/icmla52953.2021.00154.
  22. Tamim, I., A. Saci, M. Jammal, A. Shami. Downtime-Aware O-RAN VNF Deployment Strategy for Optimized Self-Healing in the O-Cloud. – In: Proc. of IEEE Global Communications Conference (GLOBECOM’21), IEEE, Spain, 2021, pp. 1-6. DOI: 10.1109/globecom46510.2021.9685775.
  23. Polese, M., L. Bonati, S. D’Oro, S. Basagni, T. Melodia. ColO-RAN: Developing Machine Learning-Based xApps for Open RAN Closed-Loop Control on Programmable Experimental Platforms. – IEEE Transactions on Mobile Computing, Vol. 22, 2022, No 10, pp. 5787-5800. DOI: 10.1109/tmc.2022.3188013.
  24. Zhang, H., H. Zhou, M. Erol-Kantarci. Federated Deep Reinforcement Learning for Resource Allocation in O-RAN Slicing. – In: Proc. of IEEE Global Communications Conference (GLOBECOM’22), IEEE, Brazil, 2022, pp. 958-963. DOI: 10.1109/globecom48099.2022.10001658.
  25. Zhou, H., M. Erol-Kantarci, V. Poor. Knowledge Transfer and Reuse: A Case Study of AI-Enabled Resource Management in RAN Slicing. – IEEE Wireless Communications, Vol. 30, 2022, No 5, pp. 160-169. DOI: 10.1109/mwc.004.2200025.
  26. Hu, T., Q. Liao, Q. Liu, G. Carle. Network Slicing via Transfer Learning Aided Distributed Deep Reinforcement Learning. – In: Proc. of IEEE Global Communications Conference (GLOBECOM’22), IEEE, Brazil, 2022, pp. 2909-2914. DOI: 10.1109/globecom48099.2022.10000763.
  27. Yu, Z., F. Gu, H. Liu, Y. Lai. 5G Multi-Slices Bi-Level Resource Allocation by Reinforcement Learning. – Mathematics, Vol. 11, 2023, No 3, p. 760. DOI:10.3390/math11030760.
  28. Schulman, J., F. Wolski, P. Dhariwal, A. Radford, O. Klimov. Proximal Policy Optimization Algorithms. – arXiv preprint arXiv:1707.06347, 2017.
  29. Raffin, A., A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, N. Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. – Journal of Machine Learning Research, Vol. 22, 2021, No 268, pp. 1-8.
  30. Pereyra, G., L. Ingl´es, C. Rattaro, P. Belzarena. Py5cheSim: a 5G Multi-Slice Cell Capacity Simulator. – In: Proc. of XLVII L. Conell, N. Laskaris, D. Blank, J. Wilson, S. Friedler, S. Luccioni, Eds. CodeCarbon: Estimate and Track Carbon Emissions from Machine Learning Catin American Computing Conference (CLEI’21), IEEE, Costa Rica, 2021, pp. 1-8. https://github.com/linglesloggia/py5chesim
  31. Schmidt, V., K. Goyal, A. Joshi, B. Feld, L. Conell, N. Laskaris, D. Blank, J. Wilson, S. Friedler, S. Luccioni. CodeCarbon: Estimate and Track Carbon Emissions from Machine Learning Computing. 2021. DOI: 10.5281/zenodo.4699491.
  32. Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba. Open AI Gym. – arXiv preprint arXiv:1606.01540, 2016. https://github.com/openai/gym.
DOI: https://doi.org/10.2478/cait-2024-0029 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 132 - 150
Submitted on: Jul 20, 2024
Accepted on: Aug 29, 2024
Published on: Sep 19, 2024
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Heba Sherif, Eman Ahmed, Amira M. Kotb, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.