References
- Lin, B., J. Zhu. Changes in Urban Air Quality during Urbanization in China. – J. Clean. Prod., Vol. 188, 2018, pp. 312-321.
- Li, L., et al. Evaluation of Future Energy Consumption on PM2.5 Emissions and Public Health Economic Loss in Beijing. – J. Clean. Prod., Vol. 187, 2018, pp. 1115-1128.
- Li, N., et al. Potential Impacts of Electric Vehicles on Air Quality in Taiwan. – Sci. Total Environ., Vol. 566-567, 2016, pp. 919-928.
- Wang, Y., M. Sun, X. Yang, X. Yuan. Public Awareness and Willingness to Pay for Tackling Smog Pollution in China: A Case Study. – J. Clean. Prod., Vol. 112, 2016., pp. 1627-1634
- Kurt, A., B. Gulbagci, F. Karaca, O. Alagha. An Online Air Pollution Forecasting System Using Neural Networks. – Environ. Int., Vol. 34, 2008, No 5, pp. 592-598.
- Moisan, S., R. Herrera, A. Clements. A Dynamic Multiple Equation Approach for Forecasting PM2.5 Pollution in Santiago, Chile. – Int. J. Forecast., Vol. 34, 2018, No 4, pp. 566-581.
- Jiang, P., R. Li, K. Zhang. Two Combined Forecasting Models Based on Singular Spectrum Analysis and Intelligent Optimized Algorithm for Short-Term Wind Speed. – Neural Comput. Appl., Vol. 30, 2018, No 1.
- Feng, Y., W. Zhang, D. Sun, L. Zhang. Ozone Concentration Forecast Method Based on Genetic Algorithm Optimized Back Propagation Neural Networks and Support Vector Machine Data Classification. – Atmos. Environ., Vol. 45, 2011, No 11, pp. 1979-1985.
- Paschalidou, A. K., S. Karakitsios, S. Kleanthous, P. A. Kassomenos. Forecasting Hourly PM10 Concentration in Cyprus through Artificial Neural Networks and Multiple Regression Models: Implications to Local Environmental Management. – Environ. Sci. Pollut. Res., Vol. 18, 2011, No 2, pp. 316-327.
- Antanasijević, D. Z., M. D. Ristić, A. A. Perić-Grujić, V. V. Pocajt. Forecasting Human Exposure to PM10 at the National Level Using an Artificial Neural Network Approach. – J. Chemom., Vol. 27, 2013, No 6, pp. 170-177.
- Wu, S., Q. Feng, Y. Du, X. Li. Artificial Neural Network Models for Daily PM10 Air Pollution Index Prediction in the Urban Area of Wuhan, China. – Environ. Eng. Sci., Vol. 28, 2011, No 5, pp. 357-363.
- Pai, T. Y., K. Hanaki, H. C. Su, L. F. Yu. A 24-h Forecast of Oxidant Concentration in Tokyo Using Neural Network and Fuzzy Learning Approach. – Clean – Soil, Air, Water, Vol. 41, 2013, No 8, pp. 729-736.
- Brabhukumr, A., P. Malhi, K. Ravindra, P. V. M. Lakshmi. Exposure to Household Air Pollution during First 3 Years of Life and IQ Level Among 6-8-Year-Old Children in India – A Cross-Sectional Study. – Sci. Total Environ., Vol. 709, 2020, p. 135110.
- Balakrishnan, K., et al. The Impact of Air Pollution on Deaths, Disease Burden, and Life Expectancy across the States of India: The Global Burden of Disease Study 2017. – Lancet Planet. Heal., Vol. 3, 2019, No 1, pp. e26-e39.
- Pandey, V., E. Oksanen, N. Singh, C. Sharma. Impacts of Air Pollution and Climate Change on Plants: Implications for India. 1st Ed. Vol. 13. Elsevier Ltd., 2013.
- Saha, D. C., P. K. Padhy. Effect of Air and Noise Pollution on Species Diversity and Population Density of Forest Birds at Lalpahari, West Bengal, India. – Sci. Total Environ., Vol. 409, 2011, No 24, pp. 5328-5336.
- Barot, V., V. Kapadia, S. Pandya. QoS Enabled IoT Based Low Cost Air Quality Monitoring System with Power Consumption Optimization. – Cybernetics and Information Technologies, Vol. 20, 2020, No 2, pp. 122-140.
- Gocheva-Ilieva, S. G., A. V. Ivanov, I. E. Livieris. High Performance Machine Learning Models of Large Scale Air Pollution Data in Urban Area. – Cybernetics and Information Technologies, Vol. 20, 2020, No 6, pp. 49-60.
- Sharma, N., S. Taneja, V. Sagar, A. Bhatt. Forecasting Air Pollution Load in Delhi Using Data Analysis Tools. – Procedia Comput. Sci., Vol. 132, 2018, pp. 1077-1085.
- Gupta, P., S. A. Christopher. Particulate Matter Air Quality Assessment Using Integrated Surface, Satellite, and Meteorological Products: Multiple Regression Approach. – J. Geophys. Res. Atmos., Vol. 114, 2009, No 14, pp. 1-13.
- Wang, P., H. Zhang, Z. Qin, G. Zhang. A Novel Hybrid-Garch Model Based on ARIMA and SVM for PM2.5 Concentrations Forecasting. – Atmos. Pollut. Res., Vol. 8, 2017, No 5, pp. 850-860.
- Ni, X. Y., H. Huang, W. P. Du. Relevance Analysis and Short-Term Prediction of PM2.5 Concentrations in Beijing Based on Multi-Source Data. – Atmos. Environ., Vol. 150, 2017, No February 2017, pp. 146-161.
- Gardner, M. W., S. R. Dorling. Artificial Neural Networks (the Multilayer Perceptron) – A Review of Applications in the Atmospheric Sciences. – Atmos. Environ., Vol. 32, 1998, No 14-15, pp. 2627-2636.
- Grivas, G., A. Chaloulakou. Artificial Neural Network Models for Prediction of PM10 Hourly Concentrations, in the Greater Area of Athens, Greece. – Atmos. Environ., Vol. 40, 2006, No 7, pp. 1216-1229.
- Iglesias-Otero, M. A., M. Fernández-González, D. Rodríguez-Caride, G. Astray, J. C. Mejuto, F. J. Rodríguez-Rajo. A Model to Forecast the Risk Periods of Plantago Pollen Allergy by Using the ANN Methodology. – Aerobiologia (Bologna)., Vol. 31, 2015, No 2, pp. 201-211.
- Li, Y., P. Jiang, Q. She, G. Lin. Research on Air Pollutant Concentration Prediction Method Based on Self-Adaptive Neuro-Fuzzy Weighted Extreme Learning Machine. – Environ. Pollut., Vol. 241, 2018, pp. 1115-1127.
- Alimissis, A., K. Philippopoulos, C. G. Tzanis, D. Deligiorgi. Spatial Estimation of Urban Air Pollution with the Use of Artificial Neural Network Models. – Atmos. Environ., Vol. 191, 2018, pp. 205-213.
- Yang, Z., J. Wang. A New Air Quality Monitoring and Early Warning System: Air Quality Assessment and Air Pollutant Concentration Prediction. – Environ. Res., Vol. 158, 2017, No May, pp. 105-117.
- Niska, H., T. Hiltunen, A. Karppinen, J. Ruuskanen, M. Kolehmainen. Evolving the Neural Network Model for Forecasting Air Pollution Time Series. – Eng. Appl. Artif. Intell., Vol. 17, 2004, No 2, pp. 159-167.
- Fu, R., Z. Zhang, L. Li. Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction. – In: Proc. of 31st Youth Acad. Annu. Conf. Chinese Assoc. Autom. (YAC’16), No December, 2017, pp. 324-328.
- Shi, X., Z. Chen, H. Wang. Convolutional LSTM Network. – Nips, 2015, pp. 2-3.
- Zhao, J., F. Deng, Y. Cai, J. Chen. Long Short-Term Memory – Fully Connected (LSTM-FC) Neural Network for PM2.5 Concentration Prediction. – Chemosphere, Vol. 220, 2019, pp. 486-492.
- Tong, W., L. Li, X. Zhou, A. Hamilton, K. Zhang. Deep Learning PM2.5 Concentrations with Bidirectional LSTM RNN. – Air Qual. Atmos. Heal., Vol. 12, 2019, No 4, pp. 411-423.
- Qi, Z., T. Wang, G. Song, W. Hu, X. Li, Z. Zhang. Deep Air Learning: Interpolation, Prediction, and Feature Analysis of Fine-Grained Air Quality. – IEEE Trans. Knowl. Data Eng., Vol. 30, 2018, No 12, pp. 2285-2297.
- Xu, C., L. Xie, X. Xiao. A Bidirectional LSTM Approach with Word Embeddings for Sentence Boundary Detection. – J. Signal Process. Syst., Vol. 90, 2018, No 7, pp. 1063-1075.
- Lin, B. Y., F. Xu, Z. Luo, K. Zhu. Multi-Channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media. – In: Proc. of 3rd Workshop on Noisy User-Generated Text, September 2017, pp. 160-165.
- Barot, V., V. Kapadia. Long Short Term Memory Neural Network-Based Model Construction and Fne-Tuning for Air Quality Parameters Prediction. – Cybernetics and Information Technologies, Vol. 22, 2022, No 1, pp. 171-189.
- Ikram, S. T., A. K. Cherukuri, B. Poorva, P. S. Ushasree, Y. Zhang, X. Liu, G. Li. Anomaly Detection Using XGBoost Ensemble of Deep Neural Network Models. – Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 175-188.
- Hochreiter, S., J. UrgenSchmidhuber. Long Shortterm Memory. – Neural Comput., Vol. 9, 1997, No 8, 17351780.
- Graves, A., J. Schmidhuber. Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures. – Neural Networks, Vol. 18, 2005, No 5-6, pp. 602-610.
- Zhang, B., H. Zhang, G. Zhao, J. Lian. Constructing a PM2.5 Concentration Prediction Model by Combining Auto-Encoder with Bi-LSTM Neural Networks. – Environmental Modelling & Software, Vol. 124, 2020, p. 104600.
- Tobler, A. W. R. Clark University. – Science (80), Vol. 13, 1889, No 332, pp. 462-465.
