Have a personal or library account? Click to login
Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate Cover

Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate

Open Access
|Nov 2023

References

  1. Gosztonyi, M., J. CsáknéFilep, S. Zsigmond-Heinczinger. Comparison of Applicability of Startup Life Cycle Theories Based on Natural Language Processing. – Eastern European Economics, Vol. 60, 2022, No 6, pp. 511-539.
  2. Savin, I., K. Chukavina, A. Pushkarev. Topic-Based Classification and Identification of Global Trends for Startup Companies. – Small Business Economics, Vol. 60, 2023, No 2, pp. 659-689.
  3. Bangarigadu, K., R. Nunkoo. A Success Versus Failure Prediction Model for Small Firms. – Journal of African Business, 2022, pp. 1-17.
  4. Díaz-Santamaría, C., J. Bulchand-Gidumal. Econometric Estimation of the Factors that Influence Startup Success. – Sustainability, Vol. 13, 2021, No 4, 2242.
  5. Pasayat, A. K., A. Mitra, B. Bhowmick. Determination of Essential Features for Predicting Start-Up Success: An Empirical Approach Using Machine Learning. – Technology Analysis & Strategic Management, 2022, pp. 1-19.
  6. Kaiser, U., J. M. Kuhn. The Value of Publicly Available, Textual and Non-Textual Information for Startup Performance Prediction. – Journal of Business Venturing Insights, Vol. 14, 2020, e00179.
  7. Archibald, T. W., E. Possani. Investment and Operational Decisions for Start-Up Companies: A Game Theory and Markov Decision Process Approach. – Annals of Operations Research, Vol. 299, 2021, No 1-2, pp. 317-330.
  8. Gupta, V., L. Rubalcaba. Competency-Industry Relatedness (C-IR) Framework for Sustained Business Growth in Startups during and Beyond Pandemic: Myths and Lessons from Publicly Funded Innovative Startups. – Sustainability, Vol. 13, 2021, No 9, 4632.
  9. Kim, H. J., T. S. Kim, S. Y. Sohn. Recommendation of Startups as Technology Cooperation Candidates from the Perspectives of Similarity and Potential: A Deep Learning Approach. – Decision Support Systems, Vol. 130, 2020, 113229.
  10. Gyimah, P., K. O. Appiah, R. N. Lussier. Success Versus Failure Prediction Model for Small Businesses in Ghana. – Journal of African Business, Vol. 21, 2020, No 2, pp. 215-234.
  11. Bai, S., Y. Zhao. Startup Investment Decision Support: Application of Venture Capital Scorecards Using Machine Learning Approaches. – Systems, Vol. 9, 2021, No 3, 55.
  12. Antretter, T., I. Blohm, D. Grichnik, J. Wincent. Predicting New Venture Survival: A Twitter-Based Machine Learning Approach to Measuring Online Legitimacy. – Journal of Business Venturing Insights, Vol. 11, 2019, e00109.
  13. Zerhari, B., A. Lehcen, S. Mouline. A New Horizo-Vertical Distributed Feature Selection Approach. – Cybernetics and Information Technologies, Vol. 18, 2018, No 4, pp. 15-28.
  14. Akhiat, Y., Y. Manzali, M. Chahhou, A. Zinedine. A New Noisy Random Forest Based Method for Feature Selection. – Cybernetics and Information Technologies, Vol. 21, 2021, No 2, pp. 10-28.
  15. Alhenawi, E., H. Alazzam, R. Al-Sayyed, O. AbuAlghanam, O. Adwan. Hybrid Feature Selection Method for Intrusion Detection Systems Based on an Improved Intelligent Water Drop Algorithm. – Cybernetics and Information Technologies, Vol. 22, 2022, No 4, pp. 73-90.
  16. Veganzones, D. Corporate Failure Prediction Using Threshold‐Based Models. – Journal of Forecasting, Vol. 41, 2022, No 5, pp. 956-979.
  17. Ross, G., S. Das, D. Sciro, H. Raza. CapitalVX: A Machine Learning Model for Startup Selection and Exit Prediction. – The Journal of Finance and Data Science, Vol. 7, 2021, pp. 94-114.
  18. Żbikowski, K., P. Antosiuk. A Machine Learning, Bias-Free Approach for Predicting Business Success Using Crunchbase Data. – Information Processing & Management, Vol. 58, 2021, No 4, 102555.
  19. Allu, R., V. N. R. Padmanabhuni. Predicting the Success Rate of a Start-Up Using LSTM with a Swish Activation Function. – Journal of Control and Decision, Vol. 9, 2022, No 3, pp. 355-363.
  20. Fuertes-Callén, Y., B. Cuellar-Fernández, C. Serrano-Cinca. Predicting Startup Survival Using First Years Financial Statements. – Journal of Small Business Management, Vol. 60, 2022, No 6, pp. 1314-1350.
  21. Elhoseny, M., N. Metawa, G. Sztano, I. M. El-Hasnony. Deep Learning-Based Model for Financial Distress Prediction. – Annals of Operations Research, 2022, pp. 1-23.
  22. Kou, G., Y. Xu, Y. Peng, F. Shen, Y. Chen, K. Chang, S. Kou. Bankruptcy Prediction for SMEs Using Transactional Data and Two-Stage Multiobjective Feature Selection. – Decision Support Systems, Vol. 140, 2021, 113429.
  23. Crunch Base Dataset. https://www.kaggle.com/datasets/arindam235/startup-investments-crunchbase
  24. Zhou, S., L. Zhou, M. Mao, H.-M. Tai, Y. Wan. An Optimized Heterogeneous Structure LSTM Network for Electricity Price Forecasting. – IEEE Access, Vol. 7, 2019, pp. 108161-108173.
  25. Zhu, H., H. Zeng, J. Liu, X. Zhang. Logish: A New Nonlinear Nonmonotonic Activation Function for Convolutional Neural Network. – Neurocomputing, Vol. 458, 2021, pp. 490-499.
  26. Toğaçar, M., N. Muzoğlu, B. Ergen, B. S. B. Yarman, A. M. Halefoğlu. Detection of COVID-19 Findings by the Local Interpretable Model-Agnostic Explanations Method of Types-Based Activations Extracted from CNNs. – Biomedical Signal Processing and Control, Vol. 71, 2022, 103128.
DOI: https://doi.org/10.2478/cait-2023-0039 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 110 - 127
Submitted on: Jun 22, 2023
Accepted on: Oct 20, 2023
Published on: Nov 30, 2023
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Ramakrishna Allu, Venkata Nageswara Rao Padmanabhuni, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.