Have a personal or library account? Click to login
Fault Tolerance of Cloud Infrastructure with Machine Learning Cover

Fault Tolerance of Cloud Infrastructure with Machine Learning

Open Access
|Nov 2023

References

  1. AbdElfattah, E., M. Elkawkagy, A. ElSisi. A Reactive Fault Tolerance Approach for Cloud Computing. – In: Proc. of 13th International IEEE Computer Engineering Conference (ICENCO’17), 2017, pp. 190-194.
  2. Hasan, M., M. S. Goraya. Priority Based Cooperative Computing in Cloud Using Task Backfilling. – Lect. Notes Software. Eng., Vol. 4, 2016, pp. 229-233. http://dx.doi.org/10.18178/nse.2016.4.3.255
  3. Kochhar, D., A. K. J. Hilda. An Approach for Fault Tolerance in Cloud Computing Using Machine Learning Technique. – Int. J. Pure Appl. Math., Vol. 117, 2017, No 22, pp. 345-351.
  4. Gupta, S., B. B. Gupta. XSS-Secure as a Service for the Platforms of Online Social NetworkBased Multimedia Web Applications in the Cloud. – Multimedia Tools Appl., Vol. 77, 2018, No 4, pp. 4829-4861.
  5. Tebaa, M., S. ElHajji. From Single to Multi-Clouds Computing Privacy and Fault Tolerance. – In: Proc. of International Conference on Future Information Engineering, Elsevier B. V., 2014, pp. 112-118. http://dx.doi.org/10.1016/j.ieri.2014.09.099
  6. Abid, A., M. T. Khemakhem, S. Marzouk, M. BemJemaa, T. Monteil, K. Drira. Toward Ant Fragile Cloud Computing Infrastructures. – Procedia Compute. Sci., Vol. 32, 2014, pp. 850-855. http://dx.doi.org/10.1016/j.procs.2014.05.501
  7. Lin, X., A. Mamat, Y. Lu, J. Deogun, S. Goddard. Real-Time Scheduling of Divisible Loads in Cluster Computing Environments. – Parallel Distributed. Computing, Vol. 70, 2010, pp. 296-308. http://dx.doi.org/10.1016/j.jpdc.2009.11.009
  8. Jhawar, R., V. Piuri. Fault Tolerance and Resilience in Cloud Computing Environments. – In: J. Vacca, Ed. Computer and Information Security Handbook. 2013, pp. 1-29. http://dx.doi.org/10.1109/CLOUD.2011.16
  9. Sun, D., G. Chang, C. Miao, X. Wang. Modelling and Evaluating a High Serviceability Fault Tolerance Strategy in Cloud Computing Environments. – Int. J. Security Network, Vol. 7, 2012, pp. 196-210. http://dx.doi.org/10.1504/IJSN.2012.053458
  10. Tchernykh, A., U. Schwiegelsohn, V. Alexandrov, E. Talbi. Towards Understanding Uncertainty in Cloud Computing Resource Provisioning. – In: Proc. of International Conference on Computational Science, 2015, pp. 1772-1781. http://dx.doi.org/10.1016/j.procs.2015.05.387
  11. Wang, T., W. Zhang, C. Ye, J. Wei, H. Zhong, T. Huang. FD4C: Automatic Fault Diagnosis Framework for Web Applications in Cloud Computing. – IEEE Trans. Syst. Man Cyber Network. Syst., Vol. 46, 2016, pp. 61-75. http://dx.doi.org/10.1109/TSMC.2015.2430834
  12. Ahmed, W., Y. W. Wu. A Survey on Reliability in Distributed Systems. – J. Computer and Syst. Sci., Vol. 79, 2013, pp. 1243-1255. http://dx.doi.org/10.1016/j.jcss.2013.02.006
  13. Hernández, S., J. Fabra, P. Álvarez, J. Ezpeleta. Using Cloud-Based Resources to Improve Availability and Reliability in a Scientific Workflow Execution Framework. – In: Proc. of 4th International Conference on Cloud Computing, GRIDs and Virtualization, 2013, pp. 230-237.
  14. Cheraghlou, M. N., A. Khadem-Zadeh, M. Haghparast. A Survey of Fault Tolerance Architecture in Cloud Computing. – J. Network. Compute. Appl., Vol. 61, 2016, pp. 81-92. http://dx.doi.org/10.1016/j.jnca.2015.10.004
  15. Prathiba, S., S. Sowvarnica. Survey of Failures and Fault Tolerance in Cloud. – In: Proc. of 2nd International Conference on Computer Communications Technologies (ICCCT’17), 2017, pp. 169-172.
  16. Zhang, J., Y. Jia, Y. Yu. Intelligent Resource Management for Fault Tolerance in Cloud Computing: A Survey. – Journal of Network and Computer Applications, Vol. 132, 2019, pp. 38-52.
  17. Gao, J., H. Wang, H. Shen. Machine Learning Based Workload Prediction in Cloud Computing. – In: Proc. of 29th International Conference on Computer Communications and Networks (ICCCN’20). IEEE, 2020, Los Alamitos, pp. 1-9.
  18. Rodriguez, G. G., J. Morrison. A Fault Tolerance Technique for Containers in the Cloud. – Journal of Cloud Computing, Vol. 9, 2020, No 1, pp. 1-18.
  19. Abdullah, S. M., M. M. Hasan, A. Alzahrni. A Dynamic Replication Scheme for Fault Tolerance in Cloud Computing. – International Journal of Grid and High Performance Computing, Vol. 12, 2020, No 1, pp. 1-21.
  20. Almukhaizim, S. H. S., M. Othman. Fault-Tolerant Resource Management in Distributed Cloud Systems: A Survey. – Journal of Grid Computing, Vol. 18, 2020, No 1, pp. 71-98.
  21. Nigam, S. S., P. Patnaik, A. K. Mandal. Towards a Comprehensive Framework for Fault-Tolerant Containerized – Micro Services in the Cloud. – Journal of Cloud Computing: Advances, Systems and Applications, Vol. 9, 2020, No 1, pp. 1-26.
  22. Alomari, F., M. Z. Islam. Fault-Tolerant Resource Management in Cloud Computing: A Systematic Review. – International Journal of Distributed Systems and Technologies, Vol. 12, 2021, No 1, pp. 44-62.
  23. Alhaddad, S., M. Z. Islam. Cloud-Based Service Availability Prediction Using Machine Learning Techniques. – Journal of Cloud Computing, Vol. 9, 2020, No 1, p. 17.
  24. Gani, M. A., S. Ullah, S. U. Khan. A Fault-Tolerant Cloud-Based Architecture for IoT Applications. – Journal of Grid Computing, Vol. 18, 2020, No 2, pp. 213-227.
  25. Quamar, N., A. B. M. A. A. Islam. Efficient Fault-Tolerant Resource Allocation in Edge Computing. – International Journal of Computer Networks and Communications Security, Vol. 8, 2020, No 3, pp. 44-52.
  26. Thangam, S., E. Kirubakaran, J. William. Architecture for Service Selection Based on Consumer Feedback (FBSR) in Service Oriented Architecture Environment. – International Information Institute (Tokyo). Information, 2014, pp. 282-286.
  27. Panwar, R., M. Supriya. Dynamic Resource Provisioning for Service-Based Cloud Applications: A Bayesian Learning Approach. – Journal of Parallel and Distributed Computing, Vol. 168, 2022, Issue October 2022, pp. 90-107. https://doi.org/10.1016/j.jpdc.2022.06.001
  28. Prakash, P., R. Suresh, P. N. DhineshKumar. Smart City Video Surveillance Using Fog Computing. – International Journal of Enterprise Network Management, Vol. 10, March 2019, pp. 389-399. DOI: 10.1504/IJENM(2019).
  29. Prakash, P., K. G. Darshaun, P. Yaazhlene, M. V. Ganesh, V. Vasuda. Fog Computing: Issues, Challenges and Future Directions. – International Journal of Electrical and Computer Engineering (IJECE), Vol. 7, December 2017, No 6, pp 3669-3673. https://DOI:10.11591/ijece.v7i6.pp3669-3673
  30. Singh, B. S., M. Pratap, D. K. Sangeeta. Hardware Setup for VLC Based Vehicle to Vehicle Communication under Fog Weather Condition. – International Journal of Advanced Science and Technology, Vol. 29, 2020, No 3s.
  31. Deepika, T., P. Prakash. Power Consumption Prediction in Cloud Data Center Using Machine Learning. – International Journal of Electrical and Computer Engineering, 2020, pp. 1524-1532. http://doi.org/10.11591/ijece.v10i2
  32. Sandeep, H. R., S. Thangam. A Hybrid Cloud Approach for Efficient Data Storage and Security. – In: Proc. of 6th International Conference on Communication and Electronics Systems (ICCES’22), 2022.
  33. Iyer, G. N. Evolutionary Games for Cloud, Fog and Edge Computing – A Comprehensive Study. – Advances in Intelligent Systems and Computing, Vol. 990, 2020, pp. 299-309. http://doi.org/:10.1007/978-981-13-8676-3_27
  34. Yehia, I., A. A. Aljaafreh. Block Chain-Fog Computing Integration Applications. – Cybernetics and Information Technologies, Vol. 23, 2023, No 1, pp. 3-37.
  35. Petrosyan, D., H. Astsatryan. Serverless High-Performance Computing over Cloud. – Cybernetics and Information Technologies, Vol. 22, 2022, No 3, pp. 82-92.
DOI: https://doi.org/10.2478/cait-2023-0034 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 26 - 50
Submitted on: Jul 13, 2023
|
Accepted on: Nov 7, 2023
|
Published on: Nov 30, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Chetankumar Kalaskar, S. Thangam, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.