Have a personal or library account? Click to login
A Real-World Benchmark Problem for Global Optimization Cover

A Real-World Benchmark Problem for Global Optimization

Open Access
|Sep 2023

References

  1. Goodfellow, I., Y. Bengio, A. Courville. Deep Learning. MIT Press, USA, 2016.
  2. Bassi, S. J., E. D. Gbenga, A. Abidemi, D. Opeoluwa Oyewola, B. M. Khammas. Metaheuristic Algorithms for PID Controller Parameters Tuning: Review, Approaches and Open Problems. – Heliyon, Vol. 8, 2022, Issue 5, e09399. DOI: 10.1016/j.heliyon.2022.e09399.
  3. Toshev, A. Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job Shop Scheduling Problem – Analysis of Test Results. – Cybernetics and Information Technologies, Vol. 19, 2019, No 4, pp. 26-44.
  4. Stoilova, K., T. Stoilov, S. Dimitrov. Bi-Level Optimization Model for Urban Traffic Control. – Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 108-126.
  5. Yadav, D. Blood Coagulation Algorithm: A Novel Bio-Inspired Meta-Heuristic Algorithm for Global Optimization. – Methematics, Vol 9, 2021, 3011. DOI: 10.3390/math9233011.
  6. Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko. Mathematical Theory of Optimal Processes. Nauka, Moscow, 1969 (in Russian).
  7. Oleinikov, V. A., N. S. Zotov, A. M. Pryshvin. Basics of Optimal and Extremal Control. Vyschaya Shkola, 1969 (in Russian).
  8. Romacevych, Y., V. Loveikin, O. Stekhno. Closed-Loop Optimal Control of a System Trolley – Payload. – UPB Scientific Bulletin, Series D: Mechanical Engineering, Vol. 81, 2019, No 2, 312, pp. 3-12.
  9. Romasevych, Y., V. Loveikin, M. Ohiienko, L. Shymko, K. Łukawiecki. Innovation Management in Agriculture. Agrotronics and Design of Optimal Controllers Based on New Modifications of Particle Swarm Optimization, 2021. https://www.wszia.opole.pl/wp-content/uploads/2020/09/Mon_Romasevich.pdf
  10. Boom, T. V., J. Klaassens, R. Meiland. Real-Time Time-Optimal Control for a Nonlinear Container Crane Using a Neural Network. – In: Informatics in Control, Automation and Robotics II. Springer, Dordrecht, 2007, pp. 79-84. DOI: 10.1007/978-1-4020-5626-0_10.
  11. Ermidoro, M., S. Formentin, A. Cologni, F. Previdi, S. M. Savaresi. On Time-Optimal Anti-Sway Controller Design for Bridge Cranes. – In: Proc. of 2014 American Control Conference, 2014, pp. 2809-2814. DOI: 10.1109/acc.2014.6858939.
  12. Loveikin, V. S., Y. A. Romasevich, S. A. Khoroshun, A. G. Shevchuck. Time-Optimal Control of a Simple Pendulum with a Movable Pivot. Part 1. – International Applied Mechanics, Vol. 54, 2018, No 3, pp. 358-365. DOI: 10.1007/s10778-018-0887-x.
  13. Loveikin, V. S., Y. A. Romasevich, S. A. Khoroshun, A. G. Shevchuck. Time-Optimal Control of a Simple Pendulum with a Movable Pivot. Part 2. – International Applied Mechanics, Vol. 56, 2020, No 2, pp. 208-215. DOI: 10.1007/s10778-020-01007-9.
  14. Da Cruz, J. J., F. Leonardi. Minimum-Time Anti-Swing Motion Planning of Cranes Using Linear Programming. – Optimal Control Applications and Methods, Vol. 34, 2012, No 2, pp. 191-201. DOI: 10.1002/oca.2016.
  15. Chen, H., Y. Fang, N. Sun. A Swing Constrained Time-Optimal Trajectory Planning Strategy for Double Pendulum Crane Systems. – Nonlinear Dynamics, Vol. 89, 2017, No 2, pp. 1513-1524. DOI: 10.1007s11071.
  16. CVX: Matlab Software for Disciplined Convex Programming. http://cvxr.com/cvx/
  17. Yiming, W., S. Ning, C. He, Z. Jianyi, F. Yongchun. Nonlinear Time-Optimal Trajectory Planning for Varying Rope-Length Overhead Cranes. – Assembly Automation, Vol. 35, 2018, No 5, pp. 587-594. DOI: 10.1108/AA-12-2017-183.
  18. Rao, A. V., D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin, I. Sanders, G. T. Huntington. GPOPS: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using the Gauss Pseudospectral Method. – ACM Transactions on Mathematical Software, Vol. 37, 2010, No 2, pp. 22:1-22:39. DOI: 10.1145/1731022.1731032. S2CID 15375549.
  19. Wu, Q., X. Wang, L. Hua, M. Xia. Dynamic Analysis and Time Optimal Anti-Swing Control of Double Pendulum Bridge Crane with Distributed Mass Beams. – Mechanical Systems and Signal Processing, Vol. 144, 2020, 106968. DOI: 10.1016/j.ymssp.2020.106968.
  20. Smekhov, A. A., N. I. Erofeev. Optimal Control of Carrying-and-Lifting Machines. Moscow, Mashinostroenie, 1975 (in Russian).
  21. Yoshida, Y. Feedback Control and Time-Optimal Control about Overhead Crane by Visual Servo and These Combination. – In: Control – Intelligent Mechatronics. 2011. DOI: 10.5772/15198.
  22. Gerasimiak, R. P., V. A. Lestchev. Analysis and Synthesis of Crane Electromechanical Systems. SMIL, Odessa, 2008 (in Russian).
  23. Perelmuter, M. M., L. N. Poliakov. Load Oscillation Elimination, which is Suspended to a Crane Trolley, via its Drive Control. – Isvestia Vuzov. Electromechanica, No 7, 1971, pp. 769-774 (in Russian).
  24. Brand, Z., M. O. T. Cole. Mini-Max Optimization of Actuator/Sensor Placement for Flexural Vibration Control of a Rotating Thin-Walled Cylinder over a Range of Speeds. – Journal of Sound and Vibration, Vol. 506, 2021, 116105. DOI: 10.1016/j.jsv.2021.116105.
  25. Romasevych, Y., V. Loveikin, Y. Loveikin. Development of a PSO Modification with Varying Cognitive Term. – In: Proc. of 3rd IEEE KhPI Week on Advanced Technology (KhPIWeek’22), IEEE, 2022, pp. 55-59. DOI: 10.1109/KhPIWeek57572.2022.9916413.
  26. Shi, Y., R. Eberhart. A Modified Particle Swarm Optimizer. – In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, 1998, pp. 69-73. DOI: 10.1109/ICEC.1998.699146.
  27. Romasevych, Y., V. Loveikin, V. Makarets. Optimal Constrained Tuning of PI-Controllers via a New PSO-Based Technique. – International Journal of Swarm Intelligence Research, Vol. 11, 2020, Issue 4, pp. 87-105. DOI: 10.4018/IJSIR.2020100104.
  28. Storn, R., K. V. Price. Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Institute of Company Secretaries of India, Chennai, Tamil Nadu. Tech. Report TR-95-012, 1995.
  29. Storn, R., K. Price. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. – Journal of Global Optimization, Vol. 11, 1997, No 4, pp. 341-359.
  30. Caraffini, F., A. V. Kononova, D. Corne. Infeasibility and Structural Bias in Differential Evolution. – Information Sciences, Vol. 496, 2019, pp. 161-179. DOI: 10.1016/j.ins.2019.05.019.
  31. Brest, J., S. Greiner, B. Boskovic, M. Mernik, V. Zumer. Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. – IEEE Transactions on Evolutionary Computation, Vol. 10, 2006, No 6, pp. 646-657. DOI: 10.1109/tevc.2006.872133.
  32. Mittal, N., U. Singh, B. S. Sohi. Modified Grey Wolf Optimizer for Global Engineering Optimization. – Applied Computational Intelligence and Soft Computing, 2016, pp. 1-16. DOI: 10.1155/2016/7950348.
  33. Saremi, S., S. Z. Mirjalili, S. M. Mirjalili. Evolutionary Population Dynamics and Grey Wolf Optimizer. – Neural Computing and Applications, Vol. 26, 2014, No 5, pp. 1257-1263. DOI: 10.1007/s00521-014-1806-7.
  34. Wang, H., W. Wang, H. Sun, S. Rahnamayan. Firefly Algorithm with Random Attraction. – International Journal of Bio-Inspired Computation, Vol. 8, 2016, No 1, 33. DOI: 10.1504/ijbic.2016.074630.
  35. Guo, Z., H. Yang, S. Wang, C. Zhou, X. Liu. Adaptive Harmony Search with Best-Based Search Strategy. – Soft Computing, Vol. 22, 2016, No 4, pp. 1335-1349. DOI:10.1007/s00500-016-2424-3.
  36. Kumar, V., J. K. Chhabra, D. Kumar. Parameter Adaptive Harmony Search Algorithm for Unimodal and Multimodal Optimization Problems. – Journal of Computational Science, Vol. 5, 2014, No 2, pp. 144-155. DOI: 10.1016/j.jocs.2013.12.001.
  37. Naik, M., M. R. Nath, A. Wunnava, S. Sahany, R. Panda. A New Adaptive Cuckoo Search Algorithm. – In: Proc. of 2015 2nd International IEEE Conference on Recent Trends in Information Systems, 2015. DOI: 10.1109/retis.2015.7232842.
  38. Wolpert, D. H., W. G. Macready. No Free Lunch Theorems for Optimization. – In: IEEE Transactions on Evolutionary Computation, Vol. 1, 1997, No 1, pp. 67-82. DOI: 10.1109/4235.585893.
DOI: https://doi.org/10.2478/cait-2023-0022 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 23 - 39
Submitted on: Jan 18, 2023
Accepted on: Jun 5, 2023
Published on: Sep 28, 2023
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Romasevych Yuriy, Loveikin Viatcheslav, Bakay Borys, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.