Have a personal or library account? Click to login
Involutory Negator of Basic Belief Assignments Cover
By: Jean Dezert and  Albena Tchamova  
Open Access
|Sep 2023

References

  1. Shafer, G. A Mathematical Theory of Evidence. Princeton University Press, 1976.
  2. Dubois, D., H. Prade. A Set-Theoretic View of Belief Functions: Logical Operations and Approximations by Fuzzy Sets. – Int. J. of General Systems, Vol. 12, 1986, pp. 193-226.
  3. Yager, R. On the Maximum Entropy Negation of a Probability Distribution. – IEEE Trans. on Fuzzy Systems, Vol. 23, October 2015, No 5, pp. 1899-1902.
  4. Dezert, J. An Effective Measure of Uncertainty of Basic Belief Assignments. – In: Proc. of Fusion 2022 Conf., Linköping, Sweden, July, 2022, pp. 1-10.
  5. Dezert, J., A. Tchamova. On Effectiveness of Measures of Uncertainty of Basic Belief Assignments. – Information & Security International Journal, Vol. 52, February 2022.
  6. Shannon, C. E. A Mathematical Theory of Communication. – The Bell System Technical Journal, Vol. 27, July & October 1948, pp. 379-423 & 623-656 (reprinted in [7]).
  7. N. J. A. Sloane, A. D. Wyner, Eds. Claude Elwood Shannon – Collected Papers. – IEEE Press, 1993. 924 p.
  8. Batyrshin, I. Z., N. I. Kubysheva, V. R. Bayrasheva, O. Kosheleva, V. Kreinovich. Negations of Probability Distributions: A Survey. – Computer Systems Ecatepes (Computacion y Sistemas de Ecatepes), Vol. 25, 2021, No 4, pp. 775-781.
  9. Srivastava, A., S. Maheshwari. Some New Properties of Negation of a Probability Distribution. – Int. J. of Intelligent Systems, Vol. 33, 2018, No 6, pp. 1133-1145.
  10. Srivastava, A., A. L. Kaur. Uncertainty and Negation – Information Theoretic Applications. – Int. J. of Intelligent Systems, Vol. 34, 2019, No 6, pp. 1248-1260.
  11. Zhang, J., R. Liu, Zhang, B. Kang. Extension of Yager’s Negation of a Probability Distribution Based on Tsallis Entropy. – Int. J. of Intel. Systems, Vol. 35, 2020, No 1, pp. 72-84.
  12. Wu, Q., Y. Deng, N. Xiong. Exponential Negation of a Probability Distribution. – Soft Computing, Vol. 26, 2022, pp. 2147-2156.
  13. Yin, L., X. Deng, Y. Deng. The Negation of a Basic Probability Assignment. – IEEE Trans. Fuzzy Syst., Vol. 27, 2019, No 1, pp. 135-143.
  14. Gao, X., Y. Deng. The Negation of Basic Probability Assignment. – IEEE Access, Vol. 7, 2019.
  15. Xie, K., F. Xiao. Negation of Belief Function Based on the Total Uncertainty Measure. – Entropy, Vol. 21, 2019, No 1, pp. 73.
  16. Deng, X., W. Jiang. On the Negation of a Dempster-Shafer Belief Structure Based on Maximum Uncertainty Allocation. – Information Sciences, Vol. 516, 2020, pp. 346-352.
  17. Batyrshin, L. Z. Contracting and Involutory Negations of Probability Distributions. – Mathematics, Vol. 9, 2389. arXiv preprint arXiv:2103.16176, 2021.
  18. Batyrshin, L. Z, et al. Generating Negations of Probability Distributions. – Soft Computing, Vol. 25, 2021, pp. 7929-7935.
  19. Liu, R., Y. Deng, Z. Li. The Maximum Entropy Negation of Basic Probability Assignment. – Soft Computing, 2023 (published online 12 April 2023).
  20. F. Smarandache, J. Dezert, Eds. Advances and Applications of DSmT for Information Fusion (Collected Works). – ARP, Vol. 2-4, 2006, 2009 & 2015.
  21. Dezert, T., J. Dezert, F. Smarandache. Improvement of Proportional Conflict Redistribution Rules of Combination of Basic Belief Assignments. – Journal of Advances in Information Fusion (JAIF), Vol. 16, June 2021, No 1.
  22. Smarandache, F. A In-Depth Look at Quantitative Information Fusion Rules, Chap. 8 of [23], June 2009, Vol. 2, pp. 205-236.
  23. Zadeh, L. A. On the Validity of Dempster’s Rule of Combination. – In: Memo M79/24, Univ. of California, Berkeley, U.S.A., 1979.
  24. Dezert, J., P. Wang, A. Tchamova. On the Validity of Dempster-Shafer Theory. – In: Proc. of 15th Int. Conf. on Information Fusion, Singapore, 9-12 July 2012, pp. 655-660.
  25. Dezert, J., A. Tchamova, D. Han. Total Belief Theorem and Generalized Bayes’ Theorem. – In: Proc. of Fusion 2018 Conf., Cambridge, UK, 10-13 July 2018.
  26. Tchamova, A., J. Dezert. On the Behavior of Dempster’s Rule of Combination and the Foundations of Dempster-Shafer Theory. – IEEE IS’2012, Sofia, Bulgaria, 6-8 September, 2012.
  27. Smarandache, F., J. Dezert, A. Tchamova. Examples where Dempster’s Rule is Insensitive to the Conflict Level between the Sources of Evidence. – Octogon Mathematical Magazine, Vol. 25, 2017, No 2, pp. 284-290.
  28. Blackman, S., R. Popoli. Design and Analysis of Modern Tracking Systems. AH, 1986.
  29. Tchamova, A., J. Dezert, F. Smarandache. New Fusion Rules for Solving Blackman’s Association Problem. Chap 15 of [23], Vol. 3, 2009, pp. 425-436.
  30. Dezert, J., D. Han, J.-M. Tacnet, S. Carladous, Y. Yang. Decision-Making with Belief Interval Distance. – In: Proc. of Belief 2016 Int. Conf., Prague, CZ, 2016 pp. 21-23.
DOI: https://doi.org/10.2478/cait-2023-0021 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 3 - 22
Submitted on: Apr 25, 2023
Accepted on: Jun 5, 2023
Published on: Sep 28, 2023
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Jean Dezert, Albena Tchamova, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.