Have a personal or library account? Click to login
Optimization of Characteristics for a Stochastic Agent-Based Model of Goods Exchange with the Use of Parallel Hybrid Genetic Algorithm Cover

Optimization of Characteristics for a Stochastic Agent-Based Model of Goods Exchange with the Use of Parallel Hybrid Genetic Algorithm

Open Access
|Jun 2023

References

  1. Pospelov, I. G. Models of Economic Dynamics Based on the Equilibrium of Forecasts of Economic Agents. – Computer Center, Russian Academy of Sciences, Moscow, 2003.
  2. Zhukova, A. A., I. G. Pospelov. Monetary and Barter Equilibria in a Stochastic Model of Commodity Exchange between Several Agents. – Computer Center, Russian Academy of Sciences, 2009.
  3. Pospelov, I. G. A Model of Random Sales. – Mathematical Notes, Vol. 103, 2018, No 3, pp. 445-459.
  4. Zhukova, A. A. Model of the Manufacturer's Behavior when Obtaining Loans and Making Investments at Random Moments in Time. – Mathematical Models and Computer Simulations, Vol. 12, 2020, pp. 933-941.
  5. Zhukova, A. A., I. G. Pospelov. Model of Optimal Consumption with Possibility of Taking Loans at Random Moments of Time. – HSE Economic Journal, Vol. 22, 2018, No 3, pp. 330-361.
  6. Kiyotaki, N., R. Wright. On Money as a Medium of Exchange. – Journal of Political Economy, Vol. 97, 1989, No 4, pp. 927-954.
  7. Kiyotaki, N., R. Wright. A Search-Theoretical Approach to Monetary Economics. – The American Economic Review, Vol. 83, 1993, No 1, pp. 63-77.
  8. Akopov, A. S., L. A. Beklaryan, A. L. Beklaryan. Multisector Bounded-Neighborhood Model: Agent Segregation and Optimization of Environment's Characteristics. – Mathematical Models and Computer Simulations, Vol. 14, 2022, No 3, pp. 503-515.
  9. Akopov, A. S., L. A. Beklaryan, M. Thakur, D. B. Verma. Parallel Multi-Agent Real-Coded Genetic Algorithm for Large-Scale Black-Box Single-Objective Optimization. – Knowledge-Based Systems, Vol. 174, 2019, pp. 103-122.
  10. Akopov, A. S., L. A. Beklaryan, M. Thakur. Improvement of Maneuverability within a Multiagent Fuzzy Transportation System with the Use of Parallel Biobjective Real-Coded Genetic Algorithm. – IEEE Transactions on Intelligent Transportation Systems, Vol. 23, 2022, No 8, pp. 12648-12664.
  11. Akopov, A. S., L. A. Beklaryan, A. L. Beklaryan. Simulation-Based Optimization for Autonomous Transportation Systems Using a Parallel Real-Coded Genetic Algorithm with Scalable Nonuniform Mutation. – Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 127-144.
  12. Ali, A. F., M. A. Tawhid. A Hybrid Particle Swarm Optimization and Genetic Algorithm with Population Partitioning for Large Scale Optimization Problems. – Ain Shams Engineering Journal, Vol. 8, 2017, No 2, pp. 191-206.
  13. Voronkov, A. D., S. A. K. Diane. Continuous Genetic Algorithm for Grasping an Object of a Priori Unknown Shape by a Robotic Manipulator. – Russian Technological Journal, Vol. 11, 2023, No 1, pp. 18-30.
  14. Herrera, F., M. Lozano, J. L. Verdegay. Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis. – Artificial Intelligence Review, Vol. 12, 1998, No 4, pp. 265-319.
  15. Bonyadi, M. R., Z. Michalewicz. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review. – Evolutionary Computation, Vol. 25, 2017, No 1, pp. 1-54.
  16. Madhumala, R. B., H. Tiwari, D. C. Verma. Virtual Machine Placement Using Energy Efficient Particle Swarm Optimization in Cloud Datacenter. – Cybernetics and Information Technologies, Vol. 21, No 1, pp. 62-72.
  17. Jin, Y. A Comprehensive Survey of Fitness Approximation in Evolutionary Computation. – Soft Computing, Vol. 9, 2005, pp. 3-12.
  18. Richmond, P., D. Walker, S. Coakley, D. Romano. High Performance Cellular Level Agent-Based Simulation with FLAME for the GPU. – Briefings in Bioinformatics, Vol. 11, 2010, No 3, pp. 334-347
  19. Makarov, V. L., A. R. Bakhtizin, G. L. Beklaryan, A. S. Akopov, N. V. Strelkovskii. Simulation of Migration and Demographic Processes Using FLAME GPU. – Business Informatics, Vol. 16, 2022, No 1, pp. 7-21.
  20. Beklaryan, A. L., L. A. Beklaryan, A. S. Akopov. Implementation of the Deffuant Model Within the FLAME GPU Framework. – Advances in Systems Science and Applications, Vol. 21, 2021, No 4, pp. 87-99.
  21. Kumar, A., K. Deb. Real-Coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems. – Complex Systems, Vol. 9, 1995, pp. 431-454.
  22. Deep, K., M. Thakur. A New Crossover Operator for Real Coded Genetic Algorithms. – Applied Mathematics and Computation, Vol. 188, 2007, No 1, pp. 895-911.
  23. Deep, K., M. Thakur. A New Mutation Operator for Real Coded Genetic Algorithms. – Applied Mathematics and Computation, Vol. 193, 2007, No 1, pp. 211-230.
DOI: https://doi.org/10.2478/cait-2023-0015 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 87 - 104
Submitted on: Mar 15, 2023
Accepted on: Apr 18, 2023
Published on: Jun 12, 2023
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Andranik S. Akopov, Armen L. Beklaryan, Aleksandra A. Zhukova, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.