References
- Jovic, A., K. Brkic, N. Bogunovic. An Overview of Free Software Tools for General Data Mining. – In: Proc. of 37th IEEE International Convention on Information and Communication Technology, Electronics, and Microelectronics, 2014, pp. 1112-1117.
- Mikut, R., M. Reischl. Data Mining Tools. – Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 1, 2011, No 5, pp. 431-443.
- Rokach, L. A Survey of Clustering Algorithms. – In: Data Mining and Knowledge Discovery Handbook. 2nd Edition. 2010, pp. 269-298.
- Wazarkar, S., B. Keshavamurthy, A. Hussain. Probabilistic Classifier for Fashion Image Grouping Using Multilayer Feature Extraction Model. – International Journal of Web Services Research, Vol. 15, 2017, pp. 89-104.
- Kaufman, L., P. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. New York, John Wiley & Sons, 2009.
- Jin, X., J. Han. Partitional Clustering. – In: Encyclopedia of Machine Learning. Boston, MA, Springer, 2011. https://doi.org/10.1007/978-0-387-30164-8_631.
- Salem, S. B., S. Naouali, Z. Chtourou. A Fast and Effective Partitional Clustering Algorithm for Large Categorical Datasets Using a k-Means-Based Approach. – Computers & Electrical Engineering, Vol. 68, 2018, pp. 463-483.
- Schubert, E., P. J. Rousseeuw. Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms, Similarity Search and Applications. – In: Lecture Notes in Computer Science, 2019, 11807.
- Marjan, K. R., A. Zahra, E. Nasibeh. A Survey of Hierarchical Clustering Algorithms. – The Journal of Mathematics and Computer Science, Vol. 5, 2012, pp. 229-240.
- Madan, S. K., J. Dana. Modified Balanced Iterative Reducing and Clustering Using Hierarchies (m-BIRCH) for Visual Clustering. – Pattern Analysis and Applications, Vol. 19, 2016, pp. 1023-1040.
- Bouguettaya, A., Q. Yu, X. Liu, X. Zhou, A. Song. Efficient Agglomerative Hierarchical Clustering. – Expert Systems with Applications, Vol. 42, 2015, No 5, pp. 2785-2797.
- Guha, S., R. Rastogi, K. Shim. Rock: A Robust Clustering Algorithm for Categorical Attributes. – Information Systems, Vol. 25, 2000, No 5, pp. 345-366.
- Karypis, G., E.-H. Han, V. Kumar. Chameleon: Hierarchical Clustering Using Dynamic Modelling. – Computer, Vol. 32, 1999, No 8, pp. 68-75.
- Kriegel, H.-P., P. Kröger, J. Sander, A. Zimek. Density-Based Clustering. – Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 1, 2011, pp. 231-240.
- Yu, H., L. Y. Chen, J. T. Yao, X. N. Wang. A Three-Way Clustering Method Based on an Improved DBSCAN Algorithm. – Physica A: Statistical Mechanics and Its Applications, Vol. 535, 2019, 122289.
- Al-Jabery, K. K., T. Obafemi-Ajayi, G. R. Olbricht, D. C. Wunsch II. Computational Learning Approaches to Data Analytics in Biomedical Applications. Elsevier, 2019.
- Guo, Y., A. Şengür, Y. Akbulut, A. Shipley. An Effective Color Image Segmentation Approach Using Neutrosophic Adaptive Mean Shift Clustering. – Measurement, Vol. 119, 2018, pp. 28-40.
- Borlea, I.-D., R.-E. Precup, A.-B. Borlea, D. Iercan. A Unified Form of Fuzzy c-Means and k-Means Algorithms and Its Partitional Implementation. – Knowledge-Based Systems, Vol. 214, 2021, 106731.
- Askari, S. Fuzzy c-Means Clustering Algorithm for Data with Unequal Cluster Sizes and Contaminated with Noise and Outliers: Review and Development. – Expert Systems with Applications, Vol. 165, 2021,113856.
- Kriegel, H.-P., P. Kröger, A. Zimek. Clustering High-Dimensional Data: A Survey on Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering. – ACM Transactions on Knowledge Discovery from Data, Vol. 3, 2009, No 1, pp. 1-58.
- Krögerand, P., A. Zimek. Subspace Clustering Techniques. – In: Encyclopedia of Database Systems, Boston, MA, Springer, 2009. https://doi.org/10.1007/978-0-387-39940-9_607.
- Bao, X., L. Wang. A Clique-Based Approach for Co-Location Pattern Mining. – Information Sciences, Vol. 490, 2019, pp. 244-264.
- Agrawal, R., J. Gehrke, D. Gunopulos, P. Raghavan. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. – In: Proc. of ACM Sigmod International Conference on Management of Data, Vol. 27, 1998, pp. 94-105
- Wu, C. J. On the Convergence Properties of the EM Algorithm. – In: The Annals of Statistics, 1983, pp. 95-103.
- Cheng, Y., K. S. Fu. Conceptual Clustering in Knowledge Organization. – In: PAMI 7, 1998, pp. 592-598.
- He, L., L.-d. Wu, Y.-c. Cai. Survey of Clustering Algorithms in Data Mining. – Application Research of Computers, Vol. 1, 2007, pp. 10-13.
- Singhal, G., S. Panwar, K. Jain, D. Banga. A Comparative Study of Data Clustering Algorithms. – International Journal of Computer Applications, Vol. 83, 2013, No 15, pp. 41-46.
- Wang, K., T. Zhang, T. Xue, Y. Lu, S.-G. Na. e-Commerce Personalized Recommendation Analysis by Deeply-Learned Clustering. – Journal of Visual Communication and Image Representation, Vol. 71, 2020, 102735.
- Zhang, Q., L. T. Yang, Z. Chen, F. Xia. A High-Order Possibilistic c-Means Algorithm for Clustering Incomplete Multimedia Data. – IEEE Systems Journal, Vol. 11, 2017, No 4, pp. 2160-2169.
- https://www.kaggle.com/PromptCloudHQ/flipkart-products
- Liu, Y., S. Z. Li, W. Wu, R. Huang. Dynamics of a Mean-Shift-Like Algorithm and Its Applications on Clustering. – Information Processing Letters, Vol. 113, 2013, No 1-2, pp. 8-16.
- Long, Z.-Z., G. Xu, J. Du, H. Zhu, T. Yan, Y.-F. Yu. Flexible Subspace Clustering: A Joint Feature Selection and k-Means Clustering Framework. – Big Data Research, Vol. 23, 2021, 100170.
- Yao, H., Q. Duan, D. Li, J. Wang. An Improved k-Means Clustering Algorithm for Fish Image Segmentation. – Mathematical and Computer Modelling, Vol. 58, 2013, No 3-4, pp. 790-798.
- Gil-Garcia, R. J., J. M. Badia-Contelles, A. Pons-Porrata. A General Framework for Agglomerative Hierarchical Clustering Algorithms. – In: Proc. of 18th International Conference on Pattern Recognition,Vol. 2, 2006, pp. 569-572.
- Herlocker, J., J. Konstan, L. Terveen, J. C. Lui, T. Riedl. Evaluating Collaborative Filtering Recommender Systems. – ACM Transactions on Information Systems, Vol. 22, 2004, pp. 5-53.
- Sainani, K. L. The Value of Scatter Plots. – PM&R, Vol. 8, 2016, No 12, pp. 1213-1217.
