References
- Beloglazov, A., J. Abawajy, R. Buyya. Energy-Aware Resource Allocation Heuristics for Efficient Management of Data Centers for Cloud Computing. – Future Generation Computer Systems, Vol. 28, 2012, No 3, pp. 755-768.
- Priya, V., C. S. Kumar, R. Kannan. Resource Scheduling Algorithm with Load Balancing for Cloud Service Provisioning. – Applied Soft Computing, Vol. 76, 2019, pp. 416-424.
- Kunwar, V., N. Agarwal, A. Rana, J. Pandey. Load Balancing in Cloud – A Systematic Review. – Big Data Analytics, 2018, pp. 583-593.
- Rekha, P., M. Dakshayini. Dynamic Cost-Load Aware Service Broker Load Balancing in Virtualization Environment. – Procedia Computer Science, Vol. 132, 2018, pp. 744-751.
- Braun, T. D., H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen. A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. – Journal of Parallel and Distributed Computing, Vol. 61, 2001, No 6, pp. 810-837.
- Duan, J., Y. Yang. A Load Balancing and Multi-Tenancy Oriented Data Center Virtualization Framework. – IEEE Transactions on Parallel and Distributed Systems, Vol. 28, 2017, No 8, pp. 2131-2144.
- Buyya, R., A. Beloglazov, J. Abawajy. Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges. ArXiv preprint arXiv: 1006.0308, 2010.
- Calheiros, R. N., R. Buyya, C. A. De Rose. A Heuristic for Mapping Virtual Machines and Links in Emulation Testbeds. – In: Proc. of IEEE International Conference on Parallel Processing, 2019, pp. 518-525.
- Cardosa, M., M. R. Korupolu, A. Singh. Shares and Utilities Based Power Consolidation in Virtualized Server Environments. – In: Proc. of IEEE International Symposium on Integrated Network Management, 2009, pp. 327-334.
- Chedid, W., C. Yu, B. Lee. Power Analysis and Optimization Techniques for Energy Efficient Computer Systems. – Advances in Computers, Vol. 63, 2005, pp. 129-164.
- Kephart, J. O., D. M. Chess. The Vision of Autonomic Computing. – Computer, Vol. 36, 2003, No 1, pp. 41-50.
- Kumar, D. Energy Efficient Resource Allocation for Cloud Computing. 2014.
- Ahmad, M. O., R. Z. Khan. Load Balancing Tools and Techniques in Cloud Computing: A Systematic Review. – Advances in Computer and Computational Sciences, 2018, pp. 181-195.
- Jing, S. Y., S. Ali, K. She, Y. Zhong. State-of-the-Art Research Study for Green Cloud Computing. – The Journal of Supercomputing, Vol. 65, 2013, No 1, pp. 445-468.
- Kang, Q. M., H. He, H. M. Song, R. Deng. Task Allocation for Maximizing Reliability of Distributed Computing Systems Using Honeybee Mating Optimization. – Journal of Systems and Software, Vol. 83, 2010, No 11, pp. 2165-2174.
- Chen, S. L., Y. Y. Chen, S. H. Kuo. CLB: A Novel Load Balancing Architecture and Algorithm for Cloud Services. – Computers & Electrical Engineering, Vol. 58, 2017, pp. 154-160.
- Shah, J. M., K. Kotecha, S. Pandya, D. Choksi, N. Joshi. Load Balancing in Cloud Computing: Methodological Survey on Different Types of Algorithm. – In: Proc. of International Conference on Trends in Electronics and Informatics, 2017, pp. 100-107.
- Mishra, S. K., M. A. Khan, B. Sahoo, D. Puthal, M. S. Obaidat, K. F. Hsiao. Time Efficient Dynamic Threshold-Based Load Balancing Technique for Cloud Computing. – In: Proc. of International Conference on Computer, Information and Telecommunication Systems, 2017, pp. 161-165.
- Lee, Y. C., A. Y. Zomaya. Energy Efficient Utilization of Resources in Cloud Computing Systems. – Journal of Supercomputing, Vol. 60, 2012, No 2, pp. 268-280.
- Liu, L., H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, Y. Chen. GreenCloud: A New Architecture for Green Data Center. – In: Proc. of 6th International Conference Industry Session on Autonomic Computing and Communications Industry Session, 2017, pp. 29-38.
- Lorpunmanee, S., M. N. Sap, A. H. Abdullah, C. Chompooinwai. An Ant Colony Optimization for Dynamic Job Scheduling in Grid Environment. – International Journal of Computer and Information Science and Engineering, Vol. 1, 2007, No 4, pp. 207-214.
- Kusic, D., J. O. Kephart, J. E. Hanson, N. Kandasamy, G. Jiang. Power and Performance Management of Virtualized Computing Environments via Lookahead Control. – Cluster Computing, Vol. 12, 2009, No 11, pp. 1-15.
- Pradhan, A., S. K. Bisoy, P. K. Mallick. Load Balancing in Cloud Computing: Survey. – In: Innovation in Electrical Power Engineering, Communication, and Computing Technology, 2020, pp. 99-111.
- Al-Joboury, I. M., E. H. Al-Hemiary. Virtualized Fog Network with Load Balancing for IoT Based Fog-to-Cloud. – JOIV: International Journal on Informatics Visualization, Vol. 4, 2020, No 3, pp. 123-126.
- Madni, S. H. H., M. S. Abd Latiff, S. I. M. Abdulhamid, J. Ali. Hybrid Gradient Descent Cuckoo Search (HGDCS) Algorithm for Resource Scheduling in IaaS Cloud Computing Environment. – Cluster Computing, Vol. 22, 2019, No 1, pp. 301-334.
- Srikantaiah, S., A. Kansal, F. Zhao. Energy Aware Consolidation for Cloud Computing. – In: Proc. of Workshop on Power Aware Computing and Systems at OSDI, USENIX HotPower’08, 2008.
- Liu, F., J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, D. Leaf. NIST Cloud Computing Reference Architecture. – NIST Special Publication, Vol. 500, 2011, No 2011, pp. 1-28.
- Gamal, M., R. Rizk, H. Mahdi, B. Elhady. Bio-Inspired Based Task Scheduling in Cloud Computing. – In: Machine Learning Paradigms: Theory and Application, Springer, 2019, pp. 289-308.
- George Amalarethinam, D., S. Kavitha. Rescheduling Enhanced Min-Min (REMM) Algorithm for Meta-Task Scheduling in Cloud Computing. – In: Proc. of International Conference on Intelligent Data Communication Technologies and Internet of Things, 2018, pp. 895-902.
- Alworafi, M. A., S. Mallappa. A Collaboration of Deadline and Budget Constraints for Task Scheduling in Cloud Computing. – Cluster Computing, Vol. 23, 2020, No 2, pp. 1073-1083.
- Gray, L., A. Kumar, H. Li. SPEC power Committee. Power and Performance Benchmark Methodology V2. – In: Standard Performance Evaluation Corporation (SPEC), 2014.
- Lawanya Shri, M., S. Subha, B. Balusamy. Energy-Aware Fruitfly Optimisation Algorithm for Load Balancing in Cloud Computing Environments. – International Journal of Intelligent Engineering and Systems, Vol. 10, 2017, No 1, pp. 75-85.
- Shojafar, M., M. Kardgar, A. A. R. Hosseinabadi, S. Shamshirband, A. Abraham. TETS: A Genetic-Based Scheduler in Cloud Computing to Decrease Energy and Makespan. – In: Proc. of International Conference on Hybrid Intelligent Systems, 2016, pp. 103-115.
- Polepally, V., K. Shahu Chatrapati. Dragonfly Optimization and Constraint Measure-Based Load Balancing in Cloud Computing. – Cluster Computing, Vol. 22, 2019, No 1, pp. 1099-1111.
- Sangaiah, A. K., A. A. R. Hosseinabadi, M. B. Shareh, S. Y. Bozorgi Rad, A. Zolfagharian, N. Chilamkurti. IoT Resource Allocation and Optimization Based on Heuristic Algorithm. – Sensors, Vol. 20, 2020, No 2, p. 539.
- Xue, S., Y. Zhang, X. Xu, G. Xing, H. Xiang, S. Ji. $$\varvec {Q} ET $$ QET: A QoS-Based Energy-Aware Task Scheduling Method in Cloud Environment. – Cluster Computing, Vol. 20, 2017, No 4, pp. 3199-3212.
- Farahabadi, A. B., A. Hosseinabadi. Present a New Hybrid Algorithm Scheduling Flexible Manufacturing System Consideration Cost Maintenance. – International Journal of Scientific & Engineering Research, Vol. 4, 2013, No 9, pp. 1870-1875.
- Home Prasanna Raju, Y., N. Devarakonda. Makespan Efficient Task Scheduling in Cloud Computing. – In: Emerging Technologies in Data Mining and Information Security, Springer, 2019, pp. 283-298.
- Wei, X., J. Fan, Z. Lu, K. Ding, R. Li, G. Zhang. Bio-Inspired Application Scheduling Algorithm for Mobile Cloud Computing. – In: Proc. of 4th International Conference on Emerging Intelligent Data and Web Technologies, 2013, pp. 690-695.
- Topcuoglu, H., S. Hariri, M. Y. Wu. Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Computing. – IEEE Transactions on Parallel and Distributed Systems, Vol. 13, 2002, No 3, pp. 260-274.
- Zhu, X., M. Hussain, X. Li. Energy-Efficient Independent Task Scheduling in Cloud Computing. – In: Proc. of International Conference on Human Centered Computing, 2018, pp. 428-439.
- Prasanna Kumar, K., K. Kousalya. Amelioration of Task Scheduling in Cloud Computing Using Crow Search Algorithm. – Neural Computing and Applications, Vol. 32, 2020, No 10, pp. 5901-5907.
- Srichandan, S., T. A. Kumar, S. Bibhudatta. Task Scheduling for Cloud Computing Using Multi-Objective Hybrid Bacteria Foraging Algorithm. – Future Computing and Informatics Journal, Vol. 3, 2018, No 2, pp. 210-230.
- Basu, S., M. Karuppiah, K. Selvakumar, K. C. Li, S. H. Islam, M. M. Hassan, M. Z. A. Bhuiyan. An Intelligent/Cognitive Model of Task Scheduling for IoT Applications in Cloud Computing Environment. – Future Generation Computer Systems, Vol. 88, 2018, pp. 254-261.
- Kashikolaei, S. M. G., A. A. R. Hosseinabadi, B. Saemi, M. B. Shareh, A. K. Sangaiah, G. B. Bian. An Enhancement of Task Scheduling in Cloud Computing Based on Imperialist Competitive Algorithm and Firefly Algorithm. – Journal of Supercomputing, Vol. 76, 2020, No 8, pp. 6302-6329.
