Have a personal or library account? Click to login
Improved Barnacle Mating Optimizer-Based Least Square Support Vector Machine to Predict COVID-19 Confirmed Cases with Total Vaccination Cover

Improved Barnacle Mating Optimizer-Based Least Square Support Vector Machine to Predict COVID-19 Confirmed Cases with Total Vaccination

Open Access
|Mar 2023

References

  1. Landi, F., et al. The New Challenge of Geriatrics: Saving Frail Older People from the SARS-COV-2 Pandemic Infection. – Journal of Nutrition, Health and Aging, Vol. 24, 2020, No 5, pp. 466-470. DOI: 10.1007/s12603-020-1356-x.
  2. Landi, F., et al. Post-COVID-19 Global Health Strategies: The Need for an Interdisciplinary Approach. – Aging Clinical and Experimental Research, Vol. 32, 2020, No 8, pp. 1613-1620. DOI: 10.1007/s40520-020-01616-x.
  3. Cheng, Z. J., J. Shan. 2019 Novel Coronavirus: Where We Are and What We Know. – Infection, Vol. 48, 2020, No 2, pp. 155-163. DOI: 10.1007/s15010-020-01401-y.
  4. Guan, W. J., et al. China Medical Treatment Expert Group for COVID-19. Clinical Characteristics of Coronavirus Disease 2019 in China. – N. Engl. J. Med., Vol. 382, 30 April 2020, No 18, pp. 1708-1720. DOI: 10.1056/NEJMoa2002032. Epub 2020 Feb 28. PMID: 32109013, PMCID: PMC7092819.
  5. Quintana, V. H., M. Santos-Nieto. Reactive-Power Dispatch by Successive Quadratic Programming. – IEEE Transactions on Energy Conversion, Vol. 4, 1989, No 3, pp. 425-435. DOI: 10.1109/60.43245.
  6. Aceves-Lara, C. A., et al. Kinetic Parameters Estimation in an Anaerobic Digestion Process Using Successive Quadratic Programming. – Water Science and Technology, Vol. 52, 2005, No 1-2, pp. 419-426. DOI: 10.2166/wst.2005.0548.
  7. Xie, Y. F. Reduced Hessian Successive Quadratic Programming Algorithm. – Large-Scale Optimization with Applications, Part I: Optimization in Inverse Problems and Design, Vol. 92, p. 195.
  8. Wan, C., J. Wang, J. Lin, Y. Song, Z. Y. Dong. Nonparametric Prediction Intervals of Wind Power via Linear Programming. – IEEE Transactions on Power Systems, Vol. 33, 2018, No 1, pp. 1074-1076. DOI: 10.1109/TPWRS.2017.2716658.
  9. Lee, E. K., T. L. Wu. Classification and Disease Prediction via Mathematical Programming. – Data Mining, Systems Analysis and Optimization in Biomedicine, Vol. 953. 2007. DOI: 10.1063/1.2817343.
  10. Cuéllar, M. P., M. Delgado, M. C. Pegalajar. An Application of Non-Linear Programming to Train Recurrent Neural Networks in Time Series Prediction Problems. – In: Proc. of 7th International Conference on Enterprise Information Systems (ICEIS’2005), 2005, No Lm, pp. 35-42. DOI: 10.1007/978-1-4020-5347-4_11.
  11. Mangasarian, O. L., W. N. Street, W. H. Wolberg. Breast Cancer Diagnosis and Prognosis via Linear Programming. – Operations Research, Vol. 43, 1995, No 4, pp. 570-577. DOI: 10.1287/opre.43.4.570.
  12. Zarrin, P., M. Maleki, Z. Khodadai, R. B. Arellano-Valle. Time Series Models Based on the Unrestricted Skew-Normal Process. – Journal of Statistical Computation and Simulation, Vol. 89, 2019, No 1, pp. 38-51. DOI: 10.1080/00949655.2018.1533962.
  13. Ghasami, S., M. Maleki, Z. Khodadadi. Leptokurtic and Platykurtic Class of Robust Symmetrical and Asymmetrical Time Series Models. – Journal of Computational and Applied Mathematics, Vol. 376, 2020, p. 112806. DOI: 10.1016/j.cam.2020.112806.
  14. Maleki, M., A. R. Nematollahi. Autoregressive Models with Mixture of Scale Mixtures of Gaussian Innovations. – Iranian Journal of Science and Technology, Transaction A: Science, Vol. 41, 2017, No 4, pp. 1099-1107. DOI: 10.1007/s40995-017-0237-6.
  15. Mustaffa, Z., M. H. Sulaiman. COVID-19 Confirmed Cases Prediction in China Based on Barnacles Mating Optimizer-Least Squares Support Vector Machines. – Cybernetics and Information Technologies, Vol. 21, 2021, No 4, pp. 62-76.
  16. Mustaffa, Z., H. Sulaiman, K. A. M. Rosli, M. F. M. Mohsin, Y. Yusof. Predictive Analysis of Dengue Outbreak Based on an Improved Salp Swarm Algorithm. – Cybernetics and Information Technologies, Vol. 20, 2020, No 4, pp. 156-169.
  17. Li, G., K. Chen, H. Yang. A New Hybrid Prediction Model of Cumulative COVID-19 Confirmed Data. – Process Safety and Environmental Protection, Vol. 157, 2022, pp. 1-19. DOI: 10.1016/j.psep.2021.10.047.
  18. Maleki, M., M. R. Mahmoudi, D. Wraith, K. H. Pho. Time Series Modelling to Forecast the Confirmed and Recovered Cases of COVID-19. – Travel Medicine and Infectious Disease, Vol. 37, 2020, No March, p. 101742. DOI: 10.1016/j.tmaid.2020.101742.
  19. Talkhi, N., N. Akhavan Fatemi, Z. Ataei, M. Jabbari Nooghabi. Modeling and Forecasting Number of Confirmed and Death Caused COVID-19 in IRAN: A Comparison of Time Series Forecasting Methods. – Biomedical Signal Processing and Control, Vol. 66, 2021, No November 2020, p. 102494. DOI: 10.1016/j.bspc.2021.102494.
  20. Chimmula, V. K. R., L. Zhang. Time Series Forecasting of COVID-19 Transmission in Canada Using LSTM Networks. – Chaos, Solitons and Fractals, Vol. 135, 2020. DOI: 10.1016/j.chaos.2020.109864.
  21. Zeroual, A., F. Harrou, A. Dairi, Y. Sun. Deep Learning Methods for Forecasting COVID-19 Time-Series Data: A Comparative Study. – Chaos, Solitons and Fractals, Vol. 140, 2020, p. 110121. DOI: 10.1016/j.chaos.2020.110121.
  22. Shastri, S., K. Singh, S. Kumar, P. Kour, V. Mansotra. Time Series Forecasting of COVID-19 Using Deep Learning Models: India-USA Comparative Case study. – Chaos, Solitons and Fractals, Vol. 140, 2020, p. 110227. DOI: 10.1016/j.chaos.2020.110227.
  23. Kumar, N., S. Susan. COVID-19 Pandemic Prediction Using Time Series Forecasting Models. – In: Proc. of 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT’20), 2020. DOI: 10.1109/ICCCNT49239.2020.9225319.
  24. Alassafi, M. O., M. Jarrah, R. Alotaibi. Time Series Predicting of COVID-19 Based on Deep Learning. – Neurocomputing, Vol. 468, 2022, pp. 335-344. DOI: 10.1016/j.neucom.2021.10.035.
  25. Clerc, M. Particle Swarm Optimization. – Particle Swarm Optimization, 2010, pp. 1942-1948. DOI: 10.1002/9780470612163.
  26. Gold, J. E., R. A. Okyay, W. E. Licht, D. J. Hurley. Investigation of Long Covid Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. – Pathogens, Vol. 10, 2021, No 6, pp. 1-15. DOI: 10.3390/pathogens10060763.
  27. Mirjalili, S., S. M. Mirjalili, A. Lewis. Grey Wolf Optimizer. – Advances in Engineering Software, Vol. 69, 2014, pp. 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
  28. Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. – Knowledge-Based Systems, Vol. 89, 2015, pp. 228-249. DOI: 10.1016/j.knosys.2015.07.006.
  29. COVID Live – Coronavirus Statistics – Worldometer. (Accessed 14 June 2022). https://www.worldometers.info/coronavirus/
  30. Sulaiman, M. H., Z. Mustaffa, M. M. Saari, H. Daniyal. Barnacles Mating Optimizer: A New Bio-Inspired Algorithm for Solving Engineering Optimization Problems. – Engineering Applications of Artificial Intelligence, Vol. 87, 2020, pp. 265-270. DOI: 10.1016/j.engappai.2019.103330.
  31. Sulaiman, M. H., Z. Mustaffa, M. M. Saari, H. Daniyal, I. Musirin, M. R. Daud. Barnacles Mating Optimizer: An Evolutionary Algorithm for Solving Optimization. – In: Proc. of IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS’18), October 2018, pp. 99-104. DOI: 10.1109/I2CACIS.2018.8603703.
  32. Sulaiman, M. H., et al. Barnacles Mating Optimizer: A Bio-Inspired Algorithm for Solving Optimization Problems. – In: Proc. of 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD’18), Vol. 87, June 2018, No September 2019, pp. 265-270. DOI: 10.1109/SNPD.2018.8441097.
  33. Abdullah, J. M., T. Ahmed. Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process. – IEEE Access, Vol. 7, 2019, pp. 43473-43486.
  34. Price, K. V., N. H. Awad, M. Z. Ali, P. N. Suganthan. The 100-Digit Challenge: Problem de_nitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization. – School Elect. Electron. Eng., Nanyang Technol. Univ. of Singapore, Tech. Rep., November 2018.
  35. Mirjalili, S. Dragon_y Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems. – Neural Comput. Appl., Vol. 27, May 2015, No 4, pp. 1053-1073.
  36. Mirjaliliab, S., A. Lewisa. The Whale Optimization Algorithm. – Adv. Eng. Softw., Vol. 95, May 2016, pp. 51-67.
  37. Mirjalilia, S., A. H. Gandomibf, S. Z. Mirjalili, C. Saremia, H. Farisd, S. M. Mirjalilie. Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems. – Adv. Eng. Softw., Vol. 114, December 2017, pp. 163-191.
  38. Mirjalili, A., S. Mirjalili. Seyedali Mirjalili. 2015 (Accessed 01 January 2019). http://www.alimirjalili.com/Projects.html
DOI: https://doi.org/10.2478/cait-2023-0007 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 125 - 140
Submitted on: Oct 4, 2022
Accepted on: Feb 10, 2023
Published on: Mar 25, 2023
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Marzia Ahmed, Mohd Herwan Sulaiman, Ahmad Johari Mohamad, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.