References
- Bonomi, F., R. Milito, J. Zhu, S. Addepalli. Fog Computing and Its Role in the Internet of Things. – In: Proc. of 1st Edition of the MCC Workshop on Mobile Cloud Computing, 2012, pp. 13-16.
- Wen, Z., R. Yang, P. Garraghan, T. Lin, J. Xu, M. Rovatsos. Fog Orchestration for Internet of Things Services. – IEEE Internet Computing, Vol. 21, 2016, No 2, pp. 16-24.
- Manzali, Y., M. El Far, M. Chahhou, M. Elmohajir. Enhancing Weak Nodes in Decision Tree Algorithm Using Data Augmentation. – Cybernetics and Information Technologies, Vol. 22, 2022, No 2, pp. 50-65.
- Jeaunita, T. J., V. Sarasvathi. A Multi-Agent Reinforcement Learning-Based Optimized Routing for QoS in IoT. – Cybernetics and Information Technologies, Vol. 21, 2021, No 4, pp. 45-61.
- Toshev, A. Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job Shop Scheduling Problem-Analysis of Test Results. – Cybernetics and Information Technologies, Vol. 19, 2019, No 4, pp. 26-44.
- Maji, P. K., R. Biswas, A. Roy. Soft Set Theory. – Computers & Mathematics with Applications, Vol. 45, 2003, No 4, pp. 555-562.
- Zhang, Z., S. Zhang. Type-2 Fuzzy Soft Sets and Their Applications in Decision Making. – Journal of Applied Mathematics, 2012.
- Zhang, Z., S. Zhang. A Novel Approach to Multi Attribute Group Decision Making Based on Trapezoidal Interval Type-2 Fuzzy Soft Sets. – Applied Mathematical Modelling, Vol. 37, 2013, No 7, pp. 4948-4971.
- Alcantud, J. C. R. Some Formal Relationships among Soft Sets, Fuzzy Sets, and Their Extensions. – International Journal of Approximate Reasoning, Vol. 68, 2016, pp. 45-53.
- Moreno, J. E., M. A. Sanchez, O. Mendoza, A. Rodriguez-Diaz, O. Castillo, P. Melin, J. R. Castro. Design of an Interval Type-2 Fuzzy Model with Justifiable Uncertainty. – Information Sciences, Vol. 513, 2020, pp. 206-221.
- Abbeel, P., A. Y. Ng. Apprenticeship Learning via Inverse Reinforcement Learning. – In: Proc. of 21st International Conference on Machine Learning, 2004, 1.
- Szepesvari, C. Algorithms for Reinforcement Learning. – Synthesis Lectures on Artificial Intelligence and Machine Learning, Vol. 4, 2010, No 1, pp. 1-103.
- Al-Quran, A., N. Hassan, E. Marei. A Novel Approach to Neutrosophic Soft Rough Set under Uncertainty. – Symmetry, Vol. 11, 2019, No 3, 84.
- Hussein, M., M. Mousa. Efficient Task Offloading for IoT-Based Applications in Fog Computing Using Ant Colony Optimization. – IEEE Access, Vol. 8, 2020, pp. 37191-37201.
- Adhikari, M., M. Mukherjee, S. Srirama. DPTO: A Deadline and Priority-Aware Task Offloading in Fog Computing Framework Leveraging Multilevel Feedback Queueing. – IEEE Internet of Things Journal, Vol. 7, 2020, pp. 5773-5782.
- Zhang, G., F. Shen, Y. Yang, H. Qian, W. Yao. Fair Task Offloading among Fog Nodes in Fog Computing Networks. – In: Proc. of IEEE International Conference on Communications (ICC’18), 2018, pp. 1-6.
- Alfakih, T., M. M. Hassan, A. Gumaei, C. Savaglio, G. Fortino. Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA. – IEEE Access, Vol. 8, 2020. pp. 54074-54084.
- Rahbari, D., M. Nickray. Task Offloading in Mobile Fog Computing by Classification and Regression Tree. – Peer-to-Peer Networking and Applications, Vol. 13, 2020, No 1, pp. 104-122.
- Yao, J., N. Ansari. Task Allocation in Fog-Aided Mobile IoT by Lyapunov Online Reinforcement Learning. – IEEE Transactions on Green Communications and Networking, Vol. 4, 2019, No 2, pp. 556-565.
