Have a personal or library account? Click to login
A Color-Texture-Based Deep Neural Network Technique to Detect Face Spoofing Attacks Cover

A Color-Texture-Based Deep Neural Network Technique to Detect Face Spoofing Attacks

Open Access
|Sep 2022

References

  1. 1. Moon, Y., I. Ryoo., S. Kim. Face Antispoofing Method Using Color Texture Segmentation on FPGA. – Security and Communication Networks, Vol. 2021, 2021, sp. 9939232.10.1155/2021/9939232
  2. 2. Zhang, L. B., F. Peng, L. Qin, M. Long. Face Spoofing Detection Based on Color Texture Markov Feature and Support Vector Machine Recursive Feature Elimination. – Journal of Visual Communication and Image Representation, Vol. 51, 2018, pp. 56-69.10.1016/j.jvcir.2018.01.001
  3. 3. Junqin, H., J. Luo. Face Spoofing Detection Based on Combining Different Color Space Models. – In: Proc. of IEEE 4th International Conference on Image, Vision and Computing (ICIVC’19), IEEE, 2019, pp. 523-528.
  4. 4. Boulkenafet, Z., J. Komulalnen, A. Hadid. Face Spoofing Detection Using Colour Texture Analysis. – IEEE Transactions on Information Forensics and Security, Vol. 11, 2016, No 8, pp. 1818-1830.10.1109/TIFS.2016.2555286
  5. 5. Boulkenafet, Z., J. Komulalnen, A. Hadid. Face Anti-Spoofing Based on Color Texture Analysis. – In: Proc. of IEEE International Conference on Image Processing (ICIP’15), IEEE, 2015, pp. 2636-2640.10.1109/ICIP.2015.7351280
  6. 6. Venkatesh, B., J. Anuradha. A Review of Feature Selection and Its Methods. – Cybernetics and Information Technologies, Vol. 19, 2019, No 1, pp. 3-26.10.2478/cait-2019-0001
  7. 7. Thomas, S. K., A. Mathew. A Noval Approach for Face Spoof Detection Using Color-Texture, Distortion and Quality Parameters. – International Journal on Recent and Innovation Trends in Computing and Communication, Vol. 5, 2017, No 2, pp. 218-220.
  8. 8. Anand, A., D. K. Vishwakarma. Face Anti-Spoofing by Spatial Fusion of Colour Texture Features and Deep Features. – In: Proc. of 3rd International Conference on Intelligent Sustainable Systems (ICISS’20), IEEE, 2020, pp. 1012-1017.10.1109/ICISS49785.2020.9316017
  9. 9. Chen, F. M., C. Wen, K. Xie, F. Q. Wen, G. Q. Sheng, X. G. Tan g. Face Liveness Detection: Fusing Colour Texture Feature and Deep Feature. – IET Biometrics, Vol. 8, 2019, No 6, pp. 369-377.10.1049/iet-bmt.2018.5235
  10. 10. Edmunds, T., C. Alice. Face Spoofing Detection Based on Colour Distortions. – IET Biometrics, Vol. 7, 2018, No 1, pp. 27-38.10.1049/iet-bmt.2017.0077
  11. 11. Rusia, M. K., D. K. Singh, M. A. Ansari. Human Face Identification Using LBP and Haar-Like Features for Real Time Attendance Monitoring. – In: Proc. of 5th International Conference on Image Information Processing (ICIIP’19), IEEE, 2019, pp. 612-616.10.1109/ICIIP47207.2019.8985867
  12. 12. Tan, X., Y. Li, J. Liu, L. Jiang. Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model. – In: Proc. of European Conference on Computer Vision, Berlin, Heideberg, Springer, 2010, pp. 504-517.10.1007/978-3-642-15567-3_37
  13. 13. Rusia, M. K., D. K. Singh. A Comprehensive Survey on Techniques to Handle Face Identity Threats: Challenges and Opportunities. – Multimed. Tools Appl., 2022, pp. 1-80.10.1007/s11042-022-13248-6918376435702682
  14. 14. Abdullakutty, F., P. Johnston, E. Elyan. Fusion Methods for Face Presentation Attack Detection. – Sensors, Vol. 22, 2022, No 14, p. 5196.10.3390/s22145196931696735890876
  15. 15. Ansari, M. A., D. K. Singh. ESAR, An Expert Shoplifting Activity Recognition System. – Cybernetics and Information Technologies, Vol. 22, 2022, No 1, pp. 190-200.10.2478/cait-2022-0012
  16. 16. Sulaiman, V., N. Ravikumar, A. Davari, S. Ellmann, A. Maier. Classification of Breast Cancer Histology Images Using Transfer Learning. – In: Proc. of International Conference Image Analysis and Recognition, Springer Cham, 2018, pp. 812-819.10.1007/978-3-319-93000-8_92
  17. 17. Xiang, Q., X. Wang, R. Li, G. Zhang, J. Lai, Q. Hu. Fruit Image Classification Based on Mobilenetv2 with Transfer Learning Technique. – In: Proc. of 3rd International Conference on Computer Science and Application Engineering, 2019, pp. 1-7.10.1145/3331453.3361658
  18. 18. Han, D., Q. Liu, W. Fan. A New Image Classification Method Using CNN Transfer Learning and Web Data Augmentation. – Expert Systems with Applications, Vol. 95, 2018, pp. 43-56.10.1016/j.eswa.2017.11.028
  19. 19. Xia, X., C. Xu, B. Nan. Inception-v3 for Flower Classification. – In: Proc. of 2nd International Conference on Image, Vision and Computing (ICIVC’17), IEEE, 2017, pp. 783-787.
  20. 20. Yang, J., Z. Lei, S. Liao, S. Z. Li. Face Liveness Detection with Component Dependent Descriptor. – In: Proc. of Int. Conference on Biometrics (ICB’13), 2013, pp. 1-6.10.1109/ICB.2013.6612955
  21. 21. De Souza, G. B., D. F. da Silva Santos, R. G. Pires, A. N. Marana, J. P. Papa. Deep Texture Features for Robust Face Spoofing Detection. – IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 64, 2017, No 12, pp. 1397-1401.10.1109/TCSII.2017.2764460
  22. 22. Raghavendra, R., R. S. Kunte. A Novel Feature Descriptor for Face Anti-Spoofing Using Texture Based Method. – Cybernetics and Information Technologies, Vol. 20, 2020, No 3, pp. 159-176.10.2478/cait-2020-0035
  23. 23. Kumar, S., S. Singh, J. Kumar. Face Spoofing Detection Using Improved SegNet Architecture with a Blur Estimation Technique. – International Journal of Biometrics, Vol. 13, 2021, No 2-3, pp. 131-149.10.1504/IJBM.2021.114639
DOI: https://doi.org/10.2478/cait-2022-0032 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 127 - 145
Submitted on: Feb 8, 2022
Accepted on: Jul 22, 2022
Published on: Sep 22, 2022
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mayank Kumar Rusia, Dushyant Kumar Singh, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.