Have a personal or library account? Click to login
Hardware Response and Performance Analysis of Multicore Computing Systems for Deep Learning Algorithms Cover

Hardware Response and Performance Analysis of Multicore Computing Systems for Deep Learning Algorithms

Open Access
|Sep 2022

References

  1. 1. Zu, Y. Deep Learning Parallel Computing and Evaluation for Embedded System Clustering Architecture Processor. – Design Automation Embedded System, Vol. 24, 2020, pp. 145-159.10.1007/s10617-020-09235-5
  2. 2. Gomatheeshwari, B., J. Selvakumar. Appropriate Allocation of Workloads on Performance Asymmetric Multicore Architectures via Deep Learning Algorithms. – Microprocessors and Microsystems, Vol. 73, 2020, 102996. ISSN 0141-9331.10.1016/j.micpro.2020.102996
  3. 3. Mittal, S. A Survey on Optimized Implementation of Deep Learning Models on the NVIDIA Jetson Platform. – Journal of Systems Architecture, Vol. 97, 2019, pp. 428-442. ISSN 1383-7621.10.1016/j.sysarc.2019.01.011
  4. 4. Demir, B., S. Ertürk. Improving SVM Classification Accuracy Using a Hierarchical Approach for Hyperspectral Images. – In: Proc. of 16th IEEE International Conference on Image Processing (ICIP’09). IEEE, 2009.10.1109/ICIP.2009.5414491
  5. 5. Sultana, F., A. Sufian, P. Dutta. Advancements in Image Classification Using Convolutional Neural Network. – In: Proc. of 4th International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN’18), IEEE, 2018.10.1109/ICRCICN.2018.8718718
  6. 6. Salimi, B. S., B. Dewantara, I. K. Wibowo. Visual-Based Trash Detection and Classification System for Smart Trash Bin Robot. – In: Proc. of International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC’18), Bali, Indonesia, 2018, pp. 378-383. DOI: 10.1109/KCIC.2018.8628499.
  7. 7. Ramcharan, A., et al. Deep Learning for Image-Based Cassava Disease Detection. – Frontiers in Plant Science, Vol. 8, 2017, p. 1852.10.3389/fpls.2017.01852
  8. 8. Basulto-Lantsova, J., A. Padilla-Medina, F. J. Perez-Pinal, A. I. Barranco-Gutierrez. Performance Comparative of OpenCV Template Matching Method on Jetson TX2 and Jetson Nano Developer Kits. – In: Proc. of 10th Annual Computing and Communication Workshop and Conference (CCWC’20), 2020, pp. 0812-0816.10.1109/CCWC47524.2020.9031166
  9. 9. Kim, S., S. Song, J. Kim, Z. Yuan, J. Cho. Fast Rotation-Invariant Template Matching with Candidate Reduction Using CUDA. – In: Proc. of International Symposium on Consumer Electronics (ISCE’15), 2015, pp. 1-2.10.1109/ISCE.2015.7177792
  10. 10. Hangün, B., Ö. Eyecioğlu. Performance Comparison between OpenCV Built in CPU and GPU Functions on Image Processing Operations. – International Journal of Engineering Science and Application, Vol. 1, 2017, pp. 34-41.
  11. 11. Tair A. salih, Mohammad Basman Gh. A Novel Face Recognition System Based on Jetson Nano Developer Kit. – IOP Conference Series: Materials Science and Engineering, Vol. 928, 2020, No 3, IOP Publishing.10.1088/1757-899X/928/3/032051
  12. 12. Kumar, L., D. K. Singh. Analyzing Computational Response and Performance of Deep Convolution Neural Network for Plant Disease Classification Using Plant Leave Dataset. – In: Proc. of 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT’21), 2021, pp. 549-553. DOI: 10.1109/CSNT51715.2021.9509632.
  13. 13. Singh, Dushyant Kumar. 3D-CNN Based Dynamic Gesture Recognition for Indian Sign Language Modeling. – Procedia Computer Science, Vol. 189, 2021, pp. 76-83.10.1016/j.procs.2021.05.071
  14. 14. Shahid, A., M. Mushtaq. A Survey Comparing Specialized Hardware and Evolution in TPUs For Neural Networks. – In: Proc. of 23rd International Multitopic Conference (INMIC’20). IEEE, 2020.10.1109/INMIC50486.2020.9318136
  15. 15. Gao, F., Z. Huang, S. Wang et al. Optimized Parallel Implementation of Face Detection Based on Embedded Heterogeneous Many-Core Architecture. – Int. J. Pattern Recognit. Artif. Intell., Vol. 31, 2017, No 7, 1756011.10.1142/S0218001417560110
  16. 16. Yin, S., O. Peng, S. Tang et al. A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications. – IEEE J. Solid State Circuits, Vol. 53, 2018, No 4, pp. 968-982.10.1109/JSSC.2017.2778281
  17. 17. Wen, S., H. Wei, Z. Zeng et al. Memristive Fully Convolutional Network: An Accurate Hardware Image-Segmentor in Deep Learning. – IEEE Trans. Emerg. Top Comput. Intell., Vol. 2, 2018, No 5, pp. 324-334.10.1109/TETCI.2018.2829911
  18. 18. Sugie, T., T. Akamatsu, T. Nishitsuji et al. High-Performance Parallel Computing for Next-Generation Holographic Imaging. – Nat Electron, Vol. 1, 2018, No 4, pp. 254-259.10.1038/s41928-018-0057-5
  19. 19. Thoman, P., K. Dichev, T. Heller et al. A Taxonomy of Task-Based Parallel Programming Technologies for High-Performance Computing. – J. Supercomput., Vol. 74, 2018, No 4, pp. 1422-1434.10.1007/s11227-018-2238-4
  20. 20. Ansari, M. A., D. K. Singh. Review of Deep Learning Techniques for Object Detection and Classification. – In: Proc. of International Conference on Communication, Networks and Computing. Springer, Singapore, 2018.10.1007/978-981-13-2372-0_37
  21. 21. Hayashi, N., et al. Advanced Embedded Packaging for Power Devices. – In: Proc. of IEEE 67th Electronic Components and Technology Conference (ECTC’17), 2017, pp. 696-703. DOI: 10.1109/ECTC.2017.215.
  22. 22. Lechner, M., A. Jantsch. Blackthorn: Latency Estimation Framework for CNNs on Embedded Nvidia Platforms. – IEEE Access, Vol. 9, 2021, pp. 110074-110084. DOI: 10.1109/ACCESS.2021.3101936.
  23. 23. Vreča, J., et al. Accelerating Deep Learning Inference in Constrained Embedded Devices Using Hardware Loops and a Dot Product Unit. – IEEE Access, Vol. 8, 2020, pp. 165913-165926. DOI: 10.1109/ACCESS.2020.3022824.
  24. 24. Tychalas, D., A. Keliris, M. Maniatakos. Stealthy Information Leakage through Peripheral Exploitation in Modern Embedded Systems. – IEEE Transactions on Device and Materials Reliability, Vol. 20, June 2020, No 2, pp. 308-318. DOI: 10.1109/TDMR.2020.2994016.
  25. 25. Neelam, D., D. K. Singh. Review of Deep Learning Techniques for Gender Classification in Images. – In: Proc. of Harmony Search and Nature Inspired Optimization Algorithms. Springer, Singapore, 2019. 1089-1099.10.1007/978-981-13-0761-4_102
  26. 26. Luckow, M. C., N. Ashcraft, E. Weill, E. Djerekarov, B. Vorster. Deep Learning in the Automotive Industry: Applications and Tools. – In: Proc. of IEEE Int. Conf. Big Data, December 2016, pp. 3759-3768.10.1109/BigData.2016.7841045
  27. 27. Devyatkin, V., D. M. Filatov. Neural Network Traffic Signs Detection System Development. – In: Proc. of XXII Int. Conf. Soft Comput. Meas. (SCM’19)), May 2019, pp. 125-128.10.1109/SCM.2019.8903787
DOI: https://doi.org/10.2478/cait-2022-0028 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 68 - 81
Submitted on: Jan 10, 2022
Accepted on: Jun 8, 2022
Published on: Sep 22, 2022
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Lalit Kumar, Dushyant Kumar Singh, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.