Have a personal or library account? Click to login
Visualizing Interesting Patterns in Cyber Threat Intelligence Using Machine Learning Techniques Cover

Visualizing Interesting Patterns in Cyber Threat Intelligence Using Machine Learning Techniques

By: Sarwat Ejaz,  Umara Noor and  Zahid Rashid  
Open Access
|Jun 2022

References

  1. 1. Hackmageddon: June 2021 Cyber Attack Statistics. https://www.hackmageddon.com/category/security/cyber-attacks-statistics/
  2. 2. Bartoli, A., A. de Lorenzo, E. Medvet, M. Faraguna, F. Tarl. A Security-Oriented Analysis of Web Inclusions in the Italian Public Administration. – Cybernetics and Information Technologies, Vol. 18, 2018, No 4, pp. 94-110.10.2478/cait-2018-0050
  3. 3. US-CERT: United States Computer Emergency Readiness Team. https://www.us-cert.gov/tlp
  4. 4. OpenIOC: An Open Framework for Sharing Threat Intelligence. http://www.openioc.org/
  5. 5. VERIS: The Vocabulary for Event Recording and Incident Sharing. http://veriscommunity.net/
  6. 6. IODEF Design principles and IODEF Data Model Overview. https://www.terena.org/activities/tf-csirt/meeting5/demchenko-iodef-design-datamodel.pdf
  7. 7. Cyber Observable eXpression: A Structured Language for Cyber Observables. https://cybox.mitre.org/
  8. 8. Structured Threat Information eXpression: A Structured Language for Cyber Threat Intelligence Information. http://stix.mitre.org/
  9. 9. Trusted Automated eXchange of Indicator Information: Enabling Cyber Threat Information Exchange. http://taxii.mitre.org/
  10. 10. Ten of the Best Threat Intelligence Feeds. https://d3security.com/blog/10-of-the-best-open-source-threat-intelligence-feeds/
  11. 11. Hail-a-Taxii. http://hailataxii.com/
  12. 12. ATT&CK MITRE. https://attack.mitre.org/
  13. 13. Venkatram, K., G. A. Mary. Review on Big Data & Analytics – Concepts, Philosophy, Process and Applications. – Cybernetics and Information Technologies, Vol. 17, 2017, No 2, pp. 3-27.10.1515/cait-2017-0013
  14. 14. Stixproject.github.io. (2019). About STIX | STIX Project Documentation. https://stixproject.github.io/about/
  15. 15. Strom, B. E., A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington, C. B. Thomas. Mitre att&ck: Design and Philosophy. Technical Report, 2018.
  16. 16. IBM X Force Exchange. https://exchange.xforce.ibmcloud.com/
  17. 17. Symantec Cyber Security. https://www.broadcom.com/products/cyber-security
  18. 18. Cyber Security Experts and Solution Provider. https://www.fireeye.com/
  19. 19. CrowdStrike: Leader in Endpoint Protection. https://www.crowdstrike.com/
  20. 20. Bromiley, M. Threat Intelligence: What It Is, And How to Use It Effectively. – SANS Institute InfoSec Reading Room, Vol. 15, 2016, 172.10.1515/9781400881147-004
  21. 21. Craig, M., A. Lakhotia, C. LeDoux, A. Newsom, V. Notani. VirusBattle: State-of-the-Art Malware Analysis for Better Cyber Threat Intelligence. – In: Proc. of 7th International Symposium on Resilient Control Systems (ISRCS’14), IEEE, 2014, pp. 1-6.10.1109/ISRCS.2014.6900103
  22. 22. STIXViz. (n.d.). Utilities & Developer Resources. http://stixproject.github.io/documentation/utilities/
  23. 23. Noel, S. Interactive Visualization and Text Mining for the Capec Cyber Attack Catalog. – In: Proc. of ACM Intelligent User Interfaces Workshop on Visual Text Analytics, 2015, pp. 1-8.
  24. 24. Zoomable Sunburst. https://bl.ocks.org/mbostock/4348373
  25. 25. Pebbles – Using Circular Treemaps to Visualize Disk Usage. http://lip.sourceforge.net/ctreemap.html.
  26. 26. FoamTree: Interactive Voronoi Treemap (n.d.). https://carrotsearch.com/foamtree
  27. 27. Zhao, H., L. Lu. Variational Circular Treemaps for Interactive Visualization of Hierarchical Data. – In: Proc. of IEEE Pacific Visualization Symposium (PacificVis’15), IEEE, 2015. pp. 81-85.10.1109/PACIFICVIS.2015.7156360
  28. 28. Daniel, B., M., A. Endert, D. Kidwell. 7 Key Challenges for Visualization in Cyber Network Defense. – In: Proc. of 11th Workshop on Visualization for Cyber Security, 2014, pp. 33-40.10.1145/2671491.2671497
  29. 29. Cawthon, N., A. V. Moere. The Effect of Aesthetic on the Usability of Data Visualization. – In: Proc. of 11th International Conference Information Visualization (IV’07), IEEE, 2007, pp. 637-648.10.1109/IV.2007.147
  30. 30. Bronwyn, W., S. J. Perl, B. Lindauer. Data Mining for Efficient Collaborative Information Discovery. – In: Proc. of 2nd ACM Workshop on Information Sharing and Collaborative Security, 2015, pp. 3-12.10.1145/2808128.2808130
  31. 31. Singh, N., S. S. Khurmi. Malware Analysis, Clustering and Classification: A Literature Review. – Int. J. Comput. Sci. Technol., Vol. 6, 2015, No 1, pp. 68-72.
  32. 32. Zahra, B., H. Hashemi, S. M. H. Fard, A. Hamzeh. A Survey on Heuristic Malware Detection Techniques. – In: Proc. of 5th Conference on Information and Knowledge Technology, IEEE, 2013, pp. 113-120.10.1109/IKT.2013.6620049
  33. 33. Kyle, O’M., D. Shick, J. Spring, E. Stoner. Malware Capability Development Patterns Respond to Defenses: Two Case Studies. White Paper, Software Engineering Institute, Carnegie Mellon University, 2016.
  34. 34. Saeed, I. A., A. Selamat, A. M. Abuagoub. A Survey on Malware and Malware Detection Systems. – International Journal of Computer Applications, Vol. 67, 2013, No 16.10.5120/11480-7108
  35. 35. Abedelaziz, M., O. Alrawi. Unveiling Zeus: Automated Classification of Malware Samples. – In: Proc. of 22nd International Conference on World Wide Web, 2013, pp. 829-832.
  36. 36. Han, J., M. Kamber. Data Mining. Concepts and Techniques. – In: Morgan Kaufmann. Vol. 340. 2012. 744 p.
  37. 37. Ikram, S. T., A. K. Cherukuri, B. Poorva, P. S. Ushasree, Y. Zhang, X. Liu, G. Li. Anomaly Detection Using XGBoost Ensemble of Deep Neural Network Models. – Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 175-188.10.2478/cait-2021-0037
  38. 38. ANOMAL STAXX. https://www.anomali.com/resources/staxx
  39. 39. Noor, U., Z. Anwar, A. W. Malik, S. Khan, S. Saleem. A Machine Learning Framework for Investigating Data Breaches Based on Semantic Analysis of Adversary’s Attack Patterns in Threat Intelligence Repositories. – Future Generation Computer Systems, Vol. 95, 2019, pp. 467-487.10.1016/j.future.2019.01.022
  40. 40. UmaraNoor/CTI-Visualizations-Using-R. https://github.com/UmaraNoor/CTI-Visualizations-Using-R-
DOI: https://doi.org/10.2478/cait-2022-0019 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 96 - 113
Submitted on: Sep 9, 2021
Accepted on: Apr 20, 2022
Published on: Jun 23, 2022
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Sarwat Ejaz, Umara Noor, Zahid Rashid, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.