Have a personal or library account? Click to login
Enhancing Weak Nodes in Decision Tree Algorithm Using Data Augmentation Cover

Enhancing Weak Nodes in Decision Tree Algorithm Using Data Augmentation

Open Access
|Jun 2022

References

  1. 1. Breiman, L., Je. Friedman, C. J. Stone, R. A. Olshen. Classification and Regression Trees. CRC Press, 1984.
  2. 2. Joost de Nijs. Decision Dags – a New Approach. Drown University, 1999.
  3. 3. Hu, D., Q. Liu, Q. Yan. Decision Tree Merging Branches Algorithm Based on Equal Predictability. – In: Proc. of International Conference on Artificial Intelligence and Computational Intelligence, Vol. 3, 2009, pp. 214-218.10.1109/AICI.2009.80
  4. 4. Ignatov, D., A. Ignatov. Decision Stream: Cultivating Deep Decision Trees. – In: Proc. of 29th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’17), 2017, pp. 905-912.10.1109/ICTAI.2017.00140
  5. 5. Gordon, V. Kass. An Exploratory Technique for Investigating Large Quantities of Categorical Data. – Journal of the Royal Statistical Society: Series C (Applied Statistics), Vol. 29, 1980, No 2, pp. 119-127.10.2307/2986296
  6. 6. Loh, Wei-Yin, Yu-Shan Shih. Split Selection Methods for Classification Trees. Sinica Statistica, 1997, pp. 815-840.
  7. 7. Gudapati, P., M. Mahmood, V. Kavuluru, M. Kuppa. A New Pruning Approach for Better and Compact Decision Trees. – International Journal on Computer Science and Engineering, Vol. 2, 2010, pp. 2551-2558.
  8. 8. Pfahringer, B., G. Holmes, R. Kirkby. New Options for Hoeffding Trees. – In: Proc. of Australasian Joint Conference on Artificial Intelligence, Springer, 2007, pp. 90-99.10.1007/978-3-540-76928-6_11
  9. 9. Ross Quinlan, J. C 4.5: Programs for Machine Learning. 1993.
  10. 10. Tan, P. J., D. L. Dowe. MML Inference of Decision Graphs with Multi-Way Joins. – In: Proc. of Australian Joint Conference on Artificial Intelligence, 2002, pp. 131-142.10.1007/3-540-36187-1_12
  11. 11. Uther, W. T. B., M. M. Veloso. The Lumberjack Algorithm for Learning Linked Decision Forests. – In: Proc. of International Symposium on Abstraction, Reformulation, and Approximation, 2000, pp. 219-232.10.1007/3-540-44914-0_13
  12. 12. Wu, Chia-Chi, Yen-Liang Chen, Yi-Hung Liu, Xiang-Yu Yang. Decision Tree Induction with a Constrained Number of Leaf Nodes. – Applied Intelligence, Vol. 45, 2016, No 3, pp. 673-685.10.1007/s10489-016-0785-z
  13. 13. Wu, X., B. Shi. New Algorithm of Simplifying the ID3 Decision Tree. – Journal of Hefei University of Technology, Vol. 27, 2004, pp. 1565-1569.
  14. 14. Yang, C., X. Wang, R. Zhu. A Strategy of Merging Branches Based on Margin Enlargement of SVM in Decision Tree Induction. – In: Proc. of IEEE International Conference on Systems, Man and Cybernetics, Vol. 1, 2006, pp. 824-828.10.1109/ICSMC.2006.384490
  15. 15. Yang, S., H. Fong. Incrementally Optimized Decision Tree for Noisy Big Data. – In: Proc. of 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, 2012, pp. 36-44.10.1145/2351316.2351322
  16. 16. Breiman, L. Random Forests. – Machine Learning, Vol. 45, 2001, No 1, pp. 5-32.10.1023/A:1010933404324
  17. 17. Cortes, C., V. Vapnik. Support Vector Machine. – Machine Learning, Vol. 20, 1995, No 3, pp. 273-297.10.1007/BF00994018
  18. 18. Keller, J. M., M. R. Gray, J. A. Givens. A Fuzzy k-Nearest Neighbour Algorithm. – IEEE Transactions on Systems, Man, and Cybernetics, 1985, No 4, pp. 580-585.10.1109/TSMC.1985.6313426
  19. 19. Wright, R. E. Logistic Regression. – In: L. G. Grim, P. R. Yarnolol, Eds. Reading and Understanding Multivariate Statistics, 1995, pp. 217-244.
  20. 20. Stork, D. G., R. O. Duda, P. E. Hart, et al. Pattern Classification. Wiley-Inter Science Publication, 2001.
  21. 21. Zhang, C., C. Liu, X. Zhang, G. Almpanidis. An Up-to-Date Comparison of State-of-the-Art Classification Algorithms. – Expert Systems with Applications, Vol. 82, 2017, pp. 128-150.10.1016/j.eswa.2017.04.003
  22. 22. Singh, S., P. Gupta. Comparative Study ID3, Cart, and C4.5 Decision Tree Algorithm: A Survey. – International Journal of Advanced Information Science and Technology (IJAIST), Vol. 27, 2014, No 27, pp. 97-103.
  23. 23. Da Costa, V. G. T., A. C. P. de Leon Ferreira, S. B. Junior et al. Strict Very Fast Decision Tree: A Memory Conservative Algorithm for Data Stream Mining. – Pattern Recognition Letters, Vol. 116, 2018, pp. 22-28.10.1016/j.patrec.2018.09.004
  24. 24. García-Martín, E., N. Lavesson, H. Grahn et al. Energy-Aware Very Fast Decision Tree. – International Journal of Data Science and Analytics, Vol. 11, 2021, No 2, pp. 105-126.10.1007/s41060-021-00246-4
  25. 25. Ganaie, M. A., M. Tanveer, P. N. Suganthan. Oblique Decision Tree Ensemble via Twin Bounded SVM. – Expert Systems with Applications, Vol. 143, 2020, p. 113072.10.1016/j.eswa.2019.113072
  26. 26. Yang, H., S. Fong. Incremental Optimization Mechanism for Constructing a Decision Tree in Data Stream Mining. – Mathematical Problems in Engineering, Vol. 2013, 2013.10.1155/2013/580397
  27. 27. Luna, J. M., E. D. Gennatas, L. H. Ungar et al. Building More Accurate Decision Trees with the Additive Tree. – Proceedings of the National Academy of Sciences, Vol. 116, 2019, No 40, pp. 19887-19893.10.1073/pnas.1816748116677820331527280
DOI: https://doi.org/10.2478/cait-2022-0016 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 50 - 65
Submitted on: Mar 14, 2021
Accepted on: Apr 21, 2022
Published on: Jun 23, 2022
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Youness Manzali, Mohamed El Far, Mohamed Chahhou, Mohammed Elmohajir, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.