Have a personal or library account? Click to login
ESAR, An Expert Shoplifting Activity Recognition System Cover

ESAR, An Expert Shoplifting Activity Recognition System

Open Access
|Apr 2022

References

  1. 1. Arroyo, R., J. J. Yebes, L. M. Bergasa, I. G. Daza, J. Almazán. Expert Video-Surveillance System for Real-Time Detection of Suspicious Behaviors in Shopping Malls. – Expert Systems with Applications, Vol. 42, 2015, No 21, pp. 7991-8005.10.1016/j.eswa.2015.06.016
  2. 2. Ansari, M. A., D. K. Singh. An Expert Eye for Identifying Shoplifters in Mega Stores. – In: Proc. of International Conference on Innovative Computing and Communications (ICICC’21), Vol. 3, (Vol. 1394, p. 107), August 2021, Springer Nature.10.1007/978-981-16-3071-2_10
  3. 3. NRF. National Retail Security Survey. National Retail Federation, Washington, DC, USA, 2020.
  4. 4. The Global Retail Theft Barometer. 2015.
  5. 5. Rankin, G. C. The Indian Penal Code. – LQ Rev., Vol. 60, 1944, No 37.
  6. 6. Singh, D. K. Human Action Recognition in Video. – In: Proc. of International Conference on Advanced Informatics for Computing Research, Singapore, Springer, July 2018, pp. 54-66.10.1007/978-981-13-3140-4_6
  7. 7. Li, C., R. Tong, M. Tang. Modelling Human Body Pose for Action Recognition Using Deep Neural Networks. – Arabian Journal for Science & Engineering (Springer Science & Business Media BV), Vol. 43, 2018, No 12.10.1007/s13369-018-3189-z
  8. 8. Kumar, K. S., R. Bhavani. Human Activity Recognition in Egocentric Video Using HOG, GiST and Color Features. – Multimedia Tools and Applications, Vol. 79, 2020, No 5, pp. 3543-3559.10.1007/s11042-018-6034-1
  9. 9. Rashwan, H. A., M. A. Garcia, S. Abdulwahab, D. Puig. Action Representation and Recognition through Temporal Co-Occurrence of Flow Fields and Convolutional Neural Networks. – Multimedia Tools and Applications, Vol. 79, 2020, No 45, pp. 34141-34158.10.1007/s11042-020-09194-w
  10. 10. Kushwaha, A., A. Khare, M. Khare. Human Activity Recognition Algorithm in Video Sequences Based on Integration of Magnitude and Orientation Information of Optical Flow. – International Journal of Image and Graphics, 2021. 2250009.10.1142/S0219467822500097
  11. 11. Singh, D. K., D. S. Kushwaha. Tracking Movements of Humans in a Real-Time Surveillance Scene. – In: Proc. of 5th International Conference on Soft Computing for Problem Solving, Singapore, Springer, 2016, pp. 491-500.10.1007/978-981-10-0451-3_45
  12. 12. Donahue, J., L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, T. Darrell. Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. – In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2625-2634.10.1109/CVPR.2015.7298878
  13. 13. Ladjailia, A., I. Bouchrika, H. F. Merouani, N. Harrati, Z. Mahfouf. Human Activity Recognition via Optical Flow: Decomposing Activities into Basic Actions. – Neural Computing and Applications, Vol. 32, 2020, No 21, pp. 16387-16400.10.1007/s00521-018-3951-x
  14. 14. Jayaswal, R., M. Dixit. A Framework for Anomaly Classification Using Deep Transfer Learning Approach. – Revue d’Intelligence Artificielle, Vol. 35, 2021, No 3, pp. 255-263. https://doi.org/10.18280/ria.35030910.18280/ria.350309
  15. 15. Yamato, Y., Y. Fukumoto, H. Kumazaki. Proposal of Shoplifting Prevention Service Using Image Analysis and ERP Check. – IEEJ Transactions on Electrical and Electronic Engineering, Vol. 12, 2017, pp. S141-S145.10.1002/tee.22427
  16. 16. Hido, S., S. Tokui, S. Oda. Jubatus: An Open Source Platform for Distributed Online Machine Learning. – In: NIPS 2013 Workshop on Big Learning, Lake Tahoe, December 2013.
  17. 17. Martínez-Mascorro, G. A., J. R. Abreu-Pederzini, J. C. Ortiz-Bayliss, A. Garcia-Collantes, H. Terashima-Marín. Criminal Intention Detection at Early Stages of Shoplifting Cases by Using 3D Convolutional Neural Networks. – Computation, Vol. 9, 2021, No 2.10.3390/computation9020024
  18. 18. Singh, D. K., S. Paroothi, M. K. Rusia, M. A. Ansari. Human Crowd Detection for City Wide Surveillance. – Procedia Computer Science, Vol. 171, 2020, pp. 350-359.10.1016/j.procs.2020.04.036
DOI: https://doi.org/10.2478/cait-2022-0012 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 190 - 200
Submitted on: Oct 12, 2021
Accepted on: Jan 21, 2022
Published on: Apr 10, 2022
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mohd. Aquib Ansari, Dushyant Kumar Singh, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.