Have a personal or library account? Click to login
Enhancеd Analysis Approach to Detect Phishing Attacks During COVID-19 Crisis Cover

Enhancеd Analysis Approach to Detect Phishing Attacks During COVID-19 Crisis

Open Access
|Apr 2022

References

  1. 1. Phishing|General Phishing Information and Prevention Tips (Accessed 18 February 2022). https://www.phishing.org/
  2. 2. Internet-Statistics (Online). https://www.broadbandsearch.net/blog/internet-statistics
  3. 3. Whitman, M. E., H. J. Mattord. Principles of Information Security. Cengage Learning, 2011.
  4. 4. Trautman, L. J., M. Hussein, E. U. Opara, M. J. Molesky, S. Rahman. Posted: No Phishing. – In: Emory Corp. Gov. Account. Rev., 2020.
  5. 5. Alqurashi, R. K., M. A. AlZain, B. Soh, M. Masud, J. Al-Amri. Cyber Attacks and Impacts: A Case Study in Saudi Arabia. – Int. J., Vol. 9, 2020, No 1.10.30534/ijatcse/2020/33912020
  6. 6. Sahingoz, O. K., E. Buber, O. Demir, B. Diri. Machine Learning Based Phishing Detection from URLs. – Expert Syst. Appl., Vol. 117, 2019, pp. 345-357.10.1016/j.eswa.2018.09.029
  7. 7. Buczak, A. L., E. Guven. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. – IEEE Commun. Surv. Tutorials, Vol. 18, 2015, No 2, pp. 1153-1176.10.1109/COMST.2015.2494502
  8. 8. Luo, Z. A Study of Accuracy and Reliability of CBIR-Based Phishing Filter. Purdue University, 2013.
  9. 9. Zouina, M., B. Outtaj. A Novel Lightweight URL Phishing Detection System Using SVM and Similarity Index. – Human-Centric Comput. Inf. Sci., Vol. 7, 2017, No 1, pp. 1-13.10.1186/s13673-017-0098-1
  10. 10. Anand, A., K. Gorde, J. R. A. Moniz, N. Park, T. Chakraborty, B.-T. Chu. Phishing URL Detection with Oversampling Based on Text Generative Adversarial Networks. – In: Proc. of 2018 IEEE International Conference on Big Data (Big Data’18), 2018, pp. 1168-1177.10.1109/BigData.2018.8622547
  11. 11. Shirazi, H., S. R. Muramudalige, I. Ray, A. P. Jayasumana. Improved Phishing Detection Algorithms Using Adversarial Autoencoder Synthesized Data. – In: Proc. of 2020 IEEE 45th Conference on Local Computer Networks (LCN’20), 2020, pp. 24-32.10.1109/LCN48667.2020.9314775
  12. 12. Xiao, X., D. Zhang, G. Hu, Y. Jiang, S. Xia. CNN-MHSA: A Convolutional Neural Network and Multi-Head Self-Attention Combined Approach for Detecting Phishing Websites. – Neural Networks, Vol. 125, 2020, pp. 303-312.10.1016/j.neunet.2020.02.01332172140
  13. 13. Kamran, S. A., S. Sengupta, A. Tavakkoli. Semi-Supervised Conditional GAN for Simultaneous Generation and Detection of Phishing URLs: A Game Theoretic Perspective. arXiv Prepr. arXiv2108.01852, 2021.
  14. 14. Yerima, S. Y., M. K. Alzaylaee. High Accuracy Phishing Detection Based on Convolutional Neural Networks. – In: Proc. of 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS’20), 2020, pp. 1-6.10.1109/ICCAIS48893.2020.9096869
  15. 15. Yi, P., Y. Guan, F. Zou, Y. Yao, W. Wang, T. Zhu. Web Phishing Detection Using a Deep Learning Framework. – Wirel. Commun. Mob. Comput., Vol. 2018, 2018.10.1155/2018/4678746
  16. 16. Abutair, H., A. Belghith, S. AlAhmadi. CBR-PDS: A Case-Based Reasoning Phishing Detection System. – J. Ambient Intell. Humaniz. Comput., Vol. 10, 2019, No 7, pp. 2593-2606.10.1007/s12652-018-0736-0
  17. 17. Adebowale, M. A., K. T. Lwin, E. Sanchez, M. A. Hossain. Intelligent Web-Phishing Detection and Protection Scheme Using Integrated Features of Images, Frames and Text. – Expert Syst. Appl., Vol. 115, 2019, pp. 300-313.10.1016/j.eswa.2018.07.067
  18. 18. Babagoli, M., M. P. Aghababa, V. Solouk. Heuristic Nonlinear Regression Strategy for Detecting Phishing Websites. – Soft Comput., Vol. 23, 2019, No 12, pp. 4315-4327.10.1007/s00500-018-3084-2
  19. 19. Ferreira, R. P., et al. Artificial Neural Network for Websites Classification with Phishing Characteristics. – Soc. Netw., Vol. 7, 2018, No 2, p. 97.10.4236/sn.2018.72008
  20. 20. Korkmaz, M., O. K. Sahingoz, B. Diri. Detection of Phishing Websites by Using Machine Learning-Based URL Analysis. – In: Proc. of 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT’20), 2020, pp. 1-7.10.1109/ICCCNT49239.2020.9225561
  21. 21. Alam, M. N., D. Sarma, F. F. Lima, I. Saha, S. Hossain. Phishing Attacks Detection Using Machine Learning Approach. – In: Proc. of 3rd International Conference on Smart Systems and Inventive Technology (ICSSIT’20), 2020, pp. 1173-1179.10.1109/ICSSIT48917.2020.9214225
  22. 22. Kumar, J., A. Santhanavijayan, B. Janet, B. Rajendran, B. S. Bindhumad-hava. Phishing Website Classification and Detection Using Machine Learning. – In: Proc. of 2020 International Conference on Computer Communication and Informatics (ICCCI’20), 2020, pp. 1-6.10.1109/ICCCI48352.2020.9104161
  23. 23. Do, N. Q., A. Selamat, O. Krejcar, T. Yokoi, H. Fujita. Phishing Webpage Classification via Deep Learning-Based Algorithms: An Empirical Study. – Appl. Sci., Vol. 11, 2021, No 19, p. 9210.10.3390/app11199210
  24. 24. Yang, R., K. Zheng, B. Wu, C. Wu, X. Wang. Phishing Website Detection Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning. – Sensors, Vol. 21, 2021, No 24, p. 8281.10.3390/s21248281870938034960375
  25. 25. Dangwal, S., A.-N. Moldovan. Feature Selection for Machine Learning-Based Phishing Websites Detection. – In: Proc. of 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA’21), 2021, pp. 1-6.10.1109/CyberSA52016.2021.9478242
  26. 26. Berners-Lee, T., L. Masinter, M. McCahill. Uniform Resource Locators (URL). 1994.10.17487/rfc1738
  27. 27. Bibi, I., A. Akhunzada, J. Malik, J. Iqbal, A. Mussaddiq, S. Kim. A Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware. – IEEE Access, Vol. 8, 2020, pp. 129600-129612.10.1109/ACCESS.2020.3009819
  28. 28. Kula, S., M. Choraś, R. Kozik, P. Ksieniewicz, M. Woźniak. Sentiment Analysis for Fake News Detection by Means of Neural Networks. – In: Proc. of International Conference on Computational Science, 2020, pp. 653-666.10.1007/978-3-030-50423-6_49
  29. 29. Chung, J., C. Gulcehre, K. Cho, Y. Bengio. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv Prepr. arXiv1412.3555, 2014.
  30. 30. Kalman, B. L., S. C. Kwasny. Why Tanh: Choosing a Sigmoidal Function. – In: Proc. of 1992 IJCNN International Joint Conference on Neural Networks, Vol. 4, 1992, pp. 578-581.
  31. 31. Baldi, P., S. Brunak, Y. Chauvin, C. A. F. Andersen, H. Nielsen. Assessing the Accuracy of Prediction Algorithms for Classification: An Overview. – Bioinformatics, Vol. 16, 2000, No 5, pp. 412-424.10.1093/bioinformatics/16.5.41210871264
  32. 32. Saito, T., M. Rehmsmeier. The Precision-Recall Plot is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. – PLoS One, Vol. 10, 2015, No 3, p. e0118432.10.1371/journal.pone.0118432434980025738806
  33. 33. Chatterjee, M., A.-S. Namin. Detecting Phishing Websites through Deep Reinforcement Learning. – In: Proc. of 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC’19), Vol. 2, 2019, pp. 227-232.10.1109/COMPSAC.2019.10211
  34. 34. Zhang, W., Q. Jiang, L. Chen, C. Li. Two-Stage ELM for Phishing Web Pages Detection Using Hybrid Features. – World Wide Web, Vol. 20, 2017, No 4, pp. 797-813.10.1007/s11280-016-0418-9
  35. 35. El-Alfy, E.-S. M. Detection of Phishing Websites Based on Probabilistic Neural Networks and K-Medoids Clustering. – Comput. J., Vol. 60, 2017, No 12, pp. 1745-1759.10.1093/comjnl/bxx035
  36. 36. Montazer, G. A., S. ArabYarmohammadi. Detection of Phishing Attacks in Iranian e-Banking Using a Fuzzy-Rough Hybrid System. – Appl. Soft Comput., Vol. 35, 2015, pp. 482-492.10.1016/j.asoc.2015.05.059
  37. 37. Yadollahi, M. M., F. Shoeleh, E. Serkani, A. Madani, H. Gharaee. An Adaptive Machine Learning Based Approach for Phishing Detection Using Hybrid Features. – In: Proc. of 2019 5th International Conference on Web Research (ICWR’19), 2019, pp. 281-286.10.1109/ICWR.2019.8765265
  38. 38. Alshira’h, M., M. Al-Fawa’reh. Detecting Phishing Urls Using machine Learning Lexical Feature-Based Analysis. – Int. J. Adv. Trends Comput. Sci. Eng., Vol. 9, 2020, No 4, pp. 5828-5837.10.30534/ijatcse/2020/242942020
  39. 39. Al-Ruzouq, R. et al. Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. – Remote Sens., Vol. 12, 2020, No 20, p. 3338.10.3390/rs12203338
  40. 40. Deep Learning – What is the Complexity of a Bidirectional Recurrent Neural Network? – Data Science Stack Exchange (Accessed 18 February 2022). https://datascience.stackexchange.com/questions/82766/what-is-the-complexity-of-a-bidirectional-recurrent-neural-network
  41. 41. Computational Complexity of ML Models|by Paritosh Kumar|Analytics Vidhya|Medium (Accessed 18 February 2022). https://medium.com/analytics-vidhya/time-complexity-of-ml-models-4ec39fad2770
DOI: https://doi.org/10.2478/cait-2022-0004 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 60 - 76
Submitted on: Dec 29, 2021
Accepted on: Feb 22, 2022
Published on: Apr 10, 2022
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mousa Tayseer Jafar, Mohammad Al-Fawa’reh, Malek Barhoush, Mohammad H. Alshira’H, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.