Have a personal or library account? Click to login
Evaluation of Computational Approaches of Short Weierstrass Elliptic Curves for Cryptography Cover

Evaluation of Computational Approaches of Short Weierstrass Elliptic Curves for Cryptography

Open Access
|Dec 2021

References

  1. 1. Koblitz, N. A Course in Number Theory and Cryptography. Springer Science & Business Media, 2 September 1994.10.1007/978-1-4419-8592-7
  2. 2. Caelli, W. J., E. P. Dawson, S. A. Rea. PKI, Elliptic Curve Cryptography, and Digital Signatures. – Computers & Security, Vol. 18, 1 January 1999, No 1, pp. 47-66.10.1016/S0167-4048(99)80008-X
  3. 3. Valenta, L., N. Sullivan, A. Sanso, N. Heninger. In Search of CurveSwap: Measuring Elliptic Curve Implementations in the Wild. – In: Proc. of 2018 IEEE European Symposium on Security and Privacy (EuroS&P’18), 24 April 2018, IEEE, pp. 384-398.10.1109/EuroSP.2018.00034
  4. 4. Koblitz, N., A. Menezes, S. Vanstone. The State of Elliptic Curve Cryptography. Designs, Codes and Cryptography. – Vol. 19, March 2000, No 2, pp. 173-193.10.1023/A:1008354106356
  5. 5. Hankerson, D., A. Menezes, S. Vanstone. Guide to Elliptic Curve Cryptography. Springer, 2003. ISBN: 0-387-95273-X.
  6. 6. Menezes, A. J., T. Okamoto, S. A. Vanstone. Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field. – IEEE Transactions on Information Theory, Vol. 39, September 1993, No 5, pp. 1639-1646.10.1109/18.259647
  7. 7. Koblitz, A. H., N. Koblitz, A. Menezes. Elliptic Curve Cryptography: The Serpentine Course of a Paradigm Shift. – Journal of Number Theory, Vol. 131, 1 May 2011, No 5, pp. 781-814. DOI:10.1016/j.jnt.2009.01.006.10.1016/j.jnt.2009.01.006
  8. 8. Smart, N. P. The Discrete Logarithm Problem on Elliptic Curves of Trace One. – Journal of Cryptology, Vol. 12, 1 Jun 1999, No 3, pp. 193-196.10.1007/s001459900052
  9. 9. Flori, J. P., J. Plût, J. R. Reinhard, M. Ekerå. Diversity and Transparency for ECC. – IACR Cryptol. ePrint Arch., 11 Jun 2015, 2015/659.
  10. 10. Menezes, A. Evaluation of Security Level of Cryptography: The Elliptic Curve Discrete Logarithm Problem (ECDLP). University of Waterloo, 14 December 2001.
  11. 11. Baier, H., J. Buchmann. Generation Methods of Elliptic Curves. An Evaluation Report for the Information-Technology Promotion Agency, Japan, 27 August 2002.
  12. 12. Semaev, I. Evaluation of Discrete Logarithms in a Group of p-Torsion Points of an Elliptic Curve in Characteristic p. – Mathematics of Computation, Vol. 67, 1998, No 221, pp. 353-356.10.1090/S0025-5718-98-00887-4
  13. 13. Washington, L. C. Elliptic Curves: Number Theory and Cryptography. CRC Press, 3 April 2008.
  14. 14. Konstantinou, E., A. Kontogeorgis, Y. C. Stamatiou, et al. – J Cryptol., Vol. 23, 2010, 477. https://doi.org/10.1007/s00145-009-9037-210.1007/s00145-009-9037-2
  15. 15. Konstantinou, E., A. Kontogeorgis, Y. C. Stamatiou, C. Zaroliagis. On the Efficient Generation of Prime-Order Elliptic Curves. – Journal of Cryptology, Vol. 23, 1 July 2010, No 3, pp. 477-503.10.1007/s00145-009-9037-2
  16. 16. Savaş, E., T. A. Schmidt, C. K. Koç. Generating Elliptic Curves of Prime Order. – In: Proc. of International Workshop on Cryptographic Hardware and Embedded Systems, 14 May 2001. Berlin, Heidelberg, Springer, pp. 142-158.10.1007/3-540-44709-1_13
  17. 17. Schoof, R. Elliptic Curves over Finite Fields and the Computation of Square Roots mod p. – Mathematics of Computation, Vol. 44, 1985, No 170, pp. 483-494.10.1090/S0025-5718-1985-0777280-6
  18. 18. I. F. Blake, G. Seroussi, N. P. Smart, Eds. Advances in Elliptic Curve Cryptography. – Cambridge University Press, Vol. 317, 25 April 2005.10.1017/CBO9780511546570
  19. 19. Menezes, A. J., T. Okamoto, S. A. Vanstone. Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field. – IEEE Transactions on Information Theory, Vol. 39, September 1993, No 5, pp. 1639-1646.10.1109/18.259647
  20. 20. Shor, P. W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. – In: Proc. of 35th Annual Symposium on Foundations of Computer Science, IEEE, 20 November 1994, pp. 124-134.
  21. 21. Balasubramanian, R., N. Koblitz. The Improbability that an Elliptic Curve has Subexponential Discrete Log Problem under the Menezes-Okamoto-Vanstone Algorithm. – Journal of Cryptology, Vol. 11, 1 March 1998, No 2, pp. 141-145.10.1007/s001459900040
  22. 22. Gaudry, P., F. Hess, N. P. Smart. Constructive and Destructive Facets of Weil Descent on Elliptic Curves. – Journal of Cryptology, Vol. 15, March 2002, No 1, pp. 19-46.10.1007/s00145-001-0011-x
  23. 23. PUB, F. Digital Signature Standard (DSS). – FIPS PUB. 27 January 2000, pp. 186-192.
  24. 24. SEC, S. 2: Recommended Elliptic Curve Domain Parameters. Standards for Efficient Cryptography Group, Certicom Corp., September 2000.
  25. 25. Brainpool, E. C. ECC Brainpool Standard Curves and Curve Generation. October, 2005. http://www.ecc-brainpool.org.
  26. 26. Lochter, M., J. Mekle. RFC 5639: ECC Brainpool Standard Curves & Curve Generation. Internet Engineering Task Force, March 2010.
  27. 27. Bernstein, D. J., Tanja Lange. SafeCurves: Choosing Safe Curves for Elliptic Curve Cryptography. 2015. Citations in this document. September 2014. https://safecurves.cr.yp.to10.1112/S1461157014000394
  28. 28. Liu, Z., H. Seo. IoT-NUMS: Evaluating NUMS Elliptic Curve Cryptography for IoT Platforms. – IEEE Transactions on Information Forensics and Security, Vol. 14, 13 July 2018, No 3, pp. 720-729.10.1109/TIFS.2018.2856123
  29. 29. Chen, L., et. al. Report on Post-Quantum Cryptography. US Department of Commerce, National Institute of Standards and Technology, 28 April 2016.
  30. 30. Roetteler, M., M. Naehrig, K. M. Svore, K. Lauter. Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms. – In: Proc. of International Conference on the Theory and Application of Cryptology and Information Security, 3 December 2017, Cham, Springer, pp. 241-270.10.1007/978-3-319-70697-9_9
  31. 31. Pohlig, S., M. Hellman. An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance (Corresp.). – IEEE Transactions on Information Theory, Vol. 24, January 1978, No 1, pp. 106-110.10.1109/TIT.1978.1055817
  32. 32. Van Oorschot, P. C., M. J. Wiener. Parallel Collision Search with Cryptanalytic Applications. – Journal of Cryptology, Vol. 12, January 1999, No 1, pp. 1-28.10.1007/PL00003816
  33. 33. Bos, J. W., C. Costello, P. Longa, M. Naehrig. Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis. – Journal of Cryptographic Engineering, Vol. 6, November 2016, No 4, pp. 259-286.10.1007/s13389-015-0097-y
  34. 34. Hamburg, M. Ed448-Goldilocks, a New Elliptic Curve. IACR Cryptol. ePrint Arch. Jun 2015, 2015/625.
  35. 35. Crandall, R. E. Method and Apparatus for Public Key Exchange in a Cryptographic System. October 1992. US Patent. (5,159,632).
  36. 36. Dąbrowski, P., R. Gliwa, J. Szmidt, R. Wicik. Generation and Implementation of Cryptographically Strong Elliptic Curves. – In: Proc. of International Conference on Number-Theoretic Methods in Cryptology, 11 September 2017. Cham, Springer, pp. 25-36.10.1007/978-3-319-76620-1_2
  37. 37. Morain, F. Building Cyclic Elliptic Curves Modulo Large Primes. – In: Proc. of Workshop on the Theory and Application of of Cryptographic Techniques, 8 April 1991. Berlin, Heidelberg, Springer, pp. 328-336.10.1007/3-540-46416-6_28
  38. 38. Cohen, H. A Course in Computational Algebraic Number Theory. Berlin, Springer-Verlag, August 1993.10.1007/978-3-662-02945-9
  39. 39. Bernstein, D. J., et.al. How to Manipulate Curve Standards: A White Paper for the Black Hat. – In: Proc. of International Conference on Research in Security Standardisation, 15 December 2015, Cham, Springer, pp. 109-139. http://bada55.cr.yp.to10.1007/978-3-319-27152-1_6
  40. 40. San, C. V. A Survey of Elliptic Curve Cryptosystems. Part I. Introductory. Technical Report, NAS Technical Report-NAS-03-012, 2003.
  41. 41. https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html
  42. 42. Costello, C., P. Longa, M. Naehrig. A Brief Discussion on Selecting New Elliptic Curves. Microsoft Research. Microsoft, 8 June 2015.
  43. 43. https://www.nist.gov/system/files/documents/2017/05/09/2014-VCAT-Annual-Report_final.pdf
  44. 44. https://cryptosith.org/michael/data/talks/2015-04-28-UWNumberTheorySeminar.pdf
  45. 45. Scott, M. Re: NIST Announces Set of Elliptic Curves. Posting to the sci.crypt Mailing List, 1999.
  46. 46. Savaş, E., T. A. Schmidt, C. K. Koç. Generating Elliptic Curves of Prime Order. – In: Proc. of InInternational Workshop on Cryptographic Hardware and Embedded Systems, 14 May 2001. Berlin, Heidelberg, Springer, pp. 142-158.10.1007/3-540-44709-1_13
  47. 47. Alekseev, E. K., V. D. Nikolaev, S. V. Smyshlyaev. On the Security Properties of Russian Standardized Elliptic Curves. Vol. 9, 2018, No 3, pp. 5-32.10.4213/mvk260
  48. 48. Petitcolas, F. La cryptographie Militaire. 1883.
  49. 49. Yin, E. Curve Selection in Elliptic Curve Cryptography. San Jose State University, Project, Spring, 2005.
  50. 50. Abhishek, K., E. G. Raj. Computation of Trusted Short Weierstrass Elliptic Curves for Cryptography. – Cybernetics and Information Technologies, Vol. 21, 2021, No 2, pp. 70-88.10.2478/cait-2021-0020
DOI: https://doi.org/10.2478/cait-2021-0045 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 105 - 118
Submitted on: Jul 6, 2021
Accepted on: Nov 8, 2021
Published on: Dec 9, 2021
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Kunal Abhishek, E. George Dharma Prakash Raj, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.