Have a personal or library account? Click to login
COVID-19 Confirmed Cases Prediction in China Based on Barnacles Mating Optimizer-Least Squares Support Vector Machines Cover

COVID-19 Confirmed Cases Prediction in China Based on Barnacles Mating Optimizer-Least Squares Support Vector Machines

Open Access
|Dec 2021

References

  1. 1. Bullock, J., A. Luccioni, K. H. Pham, C. S. N. Lam, M. Luengo Oroz. Mapping the Landscape of Artificial Intelligence Applications against COVID-19. – Journal of Artificial Intelligence Research., Vol. 69, 2020, pp. 807-845.10.1613/jair.1.12162
  2. 2. Hajirahimi, Z., M. Khashei. Hybrid Structures in Time Series Modeling and Forecasting: A Review. – Engineering Applications of Artificial Intelligence, Vol. 86, 2019, pp. 83-106.10.1016/j.engappai.2019.08.018
  3. 3. Statistics and Research Coronavirus (COVID-19) Vaccinations. 2021. https://ourworldindata.org/covid-vaccinations.
  4. 4. Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. – Knowledge-Based Systems., Vol. 89, 2015, pp. 228-249.10.1016/j.knosys.2015.07.006
  5. 5. Huang, G., L. Wu, J. Fan, X. Ma, H. Zhou, W. Zeng. Hybrid Extreme Learning Machine with Meta-Heuristic Algorithms for Monthly Pan Evaporation Prediction. – Computers and Electronics in Agriculture, Vol. 168, 2020, No 105115, pp. 1-12.10.1016/j.compag.2019.105115
  6. 6. Milan, S. T., L. Rajabion, H. Ranjbar, N. J. Navimipour. Nature Inspired Meta-Heuristic Algorithms for Solving the Load-Balancing Problem in Cloud Environments. – Computers and Operations Research, Vol. 110, 2019, pp. 159-187.10.1016/j.cor.2019.05.022
  7. 7. Geraili, A., P. Sharma, J. A. Romagnoli. A Modeling Framework for Design of Nonlinear Renewable Energy Systems through Integrated Simulation Modeling and Metaheuristic Optimization: Applications to Biorefineries. – Computers and Chemical Engineering., Vol. 61, 2014, No 11, pp. 102-117.10.1016/j.compchemeng.2013.10.005
  8. 8.Ghasemi, A., M. Gheydi, M. J. Golkar, M. Eslami. Modeling of Wind/Environment/Economic Dispatch in Power System and Solving via an Online Learning Meta-Heuristic Method. – Applied Soft Computing, Vol. 43, 2016, pp. 454-468.10.1016/j.asoc.2016.02.046
  9. 9. Zhang, P., H.-N. Wu, R.-P. Chen, T. H. T. Chan. Hybrid Meta-Heuristic and Machine Learning Algorithms for Tunneling-Induced Settlement Prediction: A Comparative Study. – Tunneling and Underground Space Technology, Vol. 99, 2020, No 103383, pp. 1-13.10.1016/j.tust.2020.103383
  10. 10. Gocken, M., M. Ozcalici, A. Boru, A. T. Dosdogru. Integrating Metaheuristics and Artificial Neural Networks for Improved Stock Price Prediction. – Expert Systems with Application, Vol. 44, 2016, No February, pp. 320-331.10.1016/j.eswa.2015.09.029
  11. 11. Somu, N., MR G. Raman, K. Ramamritham. A Hybrid Model for Building Energy Consumption Forecasting Using Long Short Term Memory Networks. – Applied Energy, Vol. 261, 2020, No 114131, pp. 1-19.10.1016/j.apenergy.2019.114131
  12. 12. Haupt, R. L., S. E. Haupt. Practical Genetic Algorithms. Second Ed. New Jersey, John Wiley & Sons, Inc., 2004.10.1002/0471671746
  13. 13. Storn, R., K. Price. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. – Journal of Global Optimization, Vol. 11, 1997, pp. 341-359.10.1023/A:1008202821328
  14. 14. Xin Yao, G. L., Yong Liu. Evolutionary Programming Made Faster. – IEEE Transactions on Evolutionary Computation, Vol. 3, 1999, No 2, pp. 82-102.10.1109/4235.771163
  15. 15. Kennedy, J., R. Eberhart. Particle Swarm Optimization. – In: Proc. of International Conference of Neural Networks, December 1995, pp. 1942-1948.
  16. 16. Dorigo, M., T. Stutzle. Ant Colony Optimization. Cambridge, MIT Press, 2004.10.7551/mitpress/1290.001.0001
  17. 17. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Erciyes University, Engineering Faculty, Computer Engeneering Department, 2005.
  18. 18. Mirjalili, S., S. M. Mirjalili, A. Lewis. Grey Wolf Optimizer. – Advances in Engineering Software, Vol. 69, 2014, pp. 46-61.10.1016/j.advengsoft.2013.12.007
  19. 19. Rashedi, E., H. Nezahabadi-Pour, S. Saryazdi. GSA: A Gravitational Search Algorithm. – Information Sciences, Vol. 179, 2009, pp. 2232-2248.10.1016/j.ins.2009.03.004
  20. 20. Osman, I. E., K. Erol. A New Optimization Method: Big Bang-Big Crunch. – Advances in Engineering Software, Vol. 37, 2006, No 2, pp. 106-111.10.1016/j.advengsoft.2005.04.005
  21. 21. Hatamlou, A. Black Hole: A New Heuristic Optimization Approach for Data Clustering. – Information Sciences, Vol. 222, 2013, No 10, pp. 175-184.10.1016/j.ins.2012.08.023
  22. 22. Kang Seok Lee, Zong Woo Geem. A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice. – Compututer Methods in Applied Mechanics Engineering, Vol. 194, 2005, No 36-38, pp. 3902-3933.10.1016/j.cma.2004.09.007
  23. 23. Moghdani, R., S. Khodaram. Volleyball Premier League Algorithm. – Applied Soft Computing, Vol. 64, 2018, No March, pp. 161-185.10.1016/j.asoc.2017.11.043
  24. 24. Sulaiman, M. H.,, Z. Mustaffa, M. M. Saari, H. Daniyal. Barnacles Mating Optimizer: A New Bio-Inspired Algorithm for Solving Engineering Optimization Problems. – Engineering Applications of Artificial Intelligence, Vol. 87, 2020, No 103330, pp. 1-13.10.1016/j.engappai.2019.103330
  25. 25. Parbat, D., M. Chakraborty. A Python Based Support Vector Regression Model for Prediction of COVID19 Cases in India. – Chaos, Solitons & Fractal, Vol. 138, 2020, No 109942, pp. 1-5.10.1016/j.chaos.2020.109942726146532834576
  26. 26. De Oliveira, L. S., S. B. Gruetzmacher, J. P. Teixeira. COVID-19 Time Series Prediction. – Procedia Computer Science, Vol. 181, 2021, pp. 973-980.10.1016/j.procs.2021.01.254
  27. 27. Jain, A., T. Sukhdeve, H. Gadia, D. S. P. Sahu, S. Verma. COVID19 Prediction Using Time Series Analysis. – In: Proc. of International Conference on Artificial Intelligence and Smart Systems (ICAIS’21), 2021, pp. 1599-1606.10.1109/ICAIS50930.2021.9395877
  28. 28. Didem Guleryuz. Forecasting Outbreak of COVID-19 in Turkey; Comparison of Box-Jenkins, Brown’s Exponential Smoothing and Long Short-Term Memory Models. – Process Safety and Environmental Protection, Vol. 149, 2021, No May, pp. 927-935.10.1016/j.psep.2021.03.032798345633776248
  29. 29. Barazandeh, M., C. S. Davis, C. J. Neufeld, D. W. Coltman, A. R. Palmer. Something Darwin Didn’t Know About Barnacles: Spermcast Mating in a Common Stalked Species. – In: Proc. of Royal Society B Biological Sciences, 2013.
  30. 30. Yusa, Y., M. Yoshikawa, J. Kitaura, M. Kawane, Y. Ozaki, S. Yamato, J. T. Høeg. Adaptive Evolution of Sexual Systems in Pedunculate Barnacles. – In: Proc. of the Royal Society B: Biological Sciences, Vol. 279, 2012, pp. 959-966.
  31. 31. Suykens, J. A. K., T. van Gestel, J. de Brabanter, B. de Moor, J. Vandewalle. Least Squares Support Vector Machines. Leuven, Belgium, World Scientific Publishing Co. Pte. Ltd., 2002.10.1142/5089
  32. 32. Coronavirus Disease (COVID-2019) Situation Reports, 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
DOI: https://doi.org/10.2478/cait-2021-0043 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 62 - 76
Submitted on: Aug 13, 2021
Accepted on: Oct 29, 2021
Published on: Dec 9, 2021
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Zuriani Mustaffa, Mohd Herwan Sulaiman, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.