Have a personal or library account? Click to login
A Multi-Agent Reinforcement Learning-Based Optimized Routing for QoS in IoT Cover

A Multi-Agent Reinforcement Learning-Based Optimized Routing for QoS in IoT

Open Access
|Dec 2021

References

  1. 1. Boutaba, R., M. A. Salahuddin, N. Limam et al. A Comprehensive Survey on Machine Learning for Networking: Evolution, Applications and Research Opportunities. – J Internet Serv. Appl., Vol. 9, 2018, No 16. https://doi.org/10.1186/s13174-018-0087-210.1186/s13174-018-0087-2
  2. 2. Liang, X., I. Balasingham, S.-S. Byun. A Multi-Agent Reinforcement Learning Based Routing Protocol for Wireless Sensor Networks. – In: Proc. of 2008 IEEE International Symposium on Wireless Communication Systems, Reykjavik, 2008, pp. 552-557. DOI: 10.1109/ISWCS.2008.4726117.10.1109/ISWCS.2008.4726117
  3. 3. Sarasvathi, V., N. Ch. S. N. Iyengar, S. Saha. An Efficient Interference Aware Partially Overlapping Channel Assignment and Routing in Wireless Mesh Networks. – International Journal of Communication Networks and Information Security (IJCNIS), March 2014.
  4. 4. Sarasvathi, V., N Ch. S. N. Iyengar. Centralized Rank-Based Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks. – Procedia Technology, Elsevier, Vol. 4, January 2012, pp. 182-186.10.1016/j.protcy.2012.05.027
  5. 5. Sarasvathi, V., N. Ch. S. N. Iyengar, S. Saha. QoS Guaranteed Intelligent Routing Using Hybrid PSO-GA in Wireless Mesh Networks. – Cybernetics and Information Technologies, Vol. 15, 2015, No 1, pp. 69-83.10.1515/cait-2015-0007
  6. 6. Sarasvathi, V., S. Saha, N. Ch. S. N. Iyengar, M. Koti. Coefficient of Restitution Based Cross Layer Interference Aware Routing Protocol in Wireless Mesh Networks. – International Journal of Communication Networks and Information Security (IJCNIS), Vol. 7, Novemer 2018, Issue 3.
  7. 7. JerminJeaunita, T. C., V. Sarasvathi. Fault Tolerant Sensor Node Placement for IoT Based Large Scale Automated Greenhouse System. – International Journal of Computing and Digital Systems, UoB, Vol. 8, 2019, Issue 2. http://dx.doi.org/10.12785/ijcds/08021010.12785/ijcds/080210
  8. 8. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. https://tools.ietf.org/html/rfc6550.
  9. 9. Thubert, P. Objective Function Zero for RPL. – RFC 6552, Vol. 33, 2012, pp. 3-8.
  10. 10. Gnawali, O., P. Levis. The Minimum Rank with Hysteresis Objective Function. – RFC 6719 (Proposed Standard), Internet Engineering Task Force, September 2012. http://www.ietf.org/rfc/rfc6719.txt10.17487/rfc6719
  11. 11. Safaei, B., A. A. M. Salehi, A. M. H. Monazzah, A. Ejlali. Effects of RPL Objective Functions on the Primitive Characteristics of Mobile and Static IoT Infrastructures. – Microprocessors and Microsystems, Vol. 69, 2019, pp. 79-91. ISSN 0141-9331. https://doi.org/10.1016/j.micpro.2019.05.010.10.1016/j.micpro.2019.05.010
  12. 12. Ghaleb, B., A. Al-Dubai, E. Ekonomou, I. Wadhaj. A New Enhanced RPL Based Routing for Internet of Things. – In: Proc. of 2017 IEEE International Conference on Communications Workshops (ICC Workshops), 2017, pp. 595-600. DOI: 10.1109/ICCW.2017.7962723.10.1109/ICCW.2017.7962723
  13. 13. Mateo Sanguino, T. J., E. Navarro Lozano, M. Sánchez Alcántara. Intelligent Agent-Based Assessment of a Resilient Multi-Hop Routing Protocol for Dynamic WSN. – Wireless Pers. Commun., 2020. https://doi.org/10.1007/s11277-020-07136-110.1007/s11277-020-07136-1
  14. 14. Rocha, V., A. A. F. Brandao. A Scalable Multi-Agent Architecture for Monitoring IoT Devices. – Elsevier, Journal of Network and Computer Applications, 139, 2019, pp. 1-14. https://doi.org/10.1016/j.jnca.2019.04.01710.1016/j.jnca.2019.04.017
  15. 15. Mittal, M., S. Srinivasan, M. Rani, O. P. Vyas. Type-2 Fuzzy Ontology-Based Multi-Agents’ System for Wireless Sensor Network. – In: Proc. of IEEE Region 10 Conference (TENCON’17), Penang, 2017, pp. 2864-2869. DOI: 10.1109/TENCON.2017.8228350.10.1109/TENCON.2017.8228350
  16. 16. Liang, X., I. Balasingham, S.-S. Byun. A Multi-Agent Reinforcement Learning Based Routing Protocol for Wireless Sensor Networks. – In: Proc. of 2008 IEEE International Symposium on Wireless Communication Systems, Reykjavik, 2008, pp. 552-557. DOI: 10.1109/ISWCS.2008.4726117.10.1109/ISWCS.2008.4726117
  17. 17. Rudek, R., L. Koszalka, I. Pozniak-Koszalka. Introduction to Multi-Agent Modified Q-Learning Routing for Computer Networks. – In: Proc. of Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/e-Learning on Telecommunications Workshop (AICT/SAPIR/ELETE’05), Lisbon, Portugal, 2005, pp. 408-413. DOI: 10.1109/AICT.2005.53.10.1109/AICT.2005.53
  18. 18. Busoniu, L., R. Babuška, B. de Schutter. Multi-Agent Reinforcement Learning: An Overview. – In: D. Srinivasan, L. C. Jain, Eds. Innovations in Multi-Agent Systems and Applications – 1. Studies in Computational Intelligence. Vol. 310. Berlin, Heidelberg, Springer, 2010, pp. 183-221. https://doi.org/10.1007/978-3-642-14435-6_710.1007/978-3-642-14435-6_7
  19. 19. Liu, M., S. Xu, S. Sun. An Agent-Assisted QoS-Based Routing Algorithm for Wireless Sensor Networks. – Journal of Network and Computer Applications, Elsevier, January 2012. https://doi.org/10.1016/j.jnca.2011.03.03110.1016/j.jnca.2011.03.031
  20. 20. Bendjima, M., M. Feham. Multi-Agent System for a Reliable Routing in WSN. – In: Proc. of 2015 Science and Information Conference (SAI’15), London, 2015, pp. 1412-1419. DOI: 10.1109/SAI.2015.7237331.10.1109/SAI.2015.7237331
  21. 21. Silva, M. A. L., S. R. de Souza, M. J. F. Souza, A. L. C. Bazzan. A Reinforcement Learning-Based Multi-Agent Framework Applied for Solving Routing and Scheduling Problems. – Elsevier, Expert Systems with Applications, Vol. 131, 2019, pp. 148-171. https://doi.org/10.1016/j.eswa.2019.04.05610.1016/j.eswa.2019.04.056
  22. 22. Belagali, R., A. M. Anusha, P. Sangulagi. Energy-Efficient Secure Routing and Aggregation in Military Sensor Network Using Multi-Agent Approach. – In: Proc. of International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, 2015, pp. 286-292. DOI: 10.1109/ICATCCT.2015.7456897.10.1109/ICATCCT.2015.7456897
  23. 23. Sutagundar, A. V., S. S. Manvi. Fish Bone Structure-Based Data Aggregation and Routing in Wireless Sensor Network: Multi-Agent Based Approach. – Telecommun. Syst., Vol. 56, 2014, pp. 493-508. https://doi.org/10.1007/s11235-013-9769-z10.1007/s11235-013-9769-z
  24. 24. Mammeri, Z. Reinforcement Learning Based Routing in Networks: Review and Classification of Approaches. – IEEE Access, Vol. 7, 2019, pp. 55916-55950. DOI: 10.1109/ACCESS.2019.2913776.10.1109/ACCESS.2019.2913776
  25. 25. You, X., X. Li, Y. Xu, H. Feng, J. Zhao, H. Yan. Toward Packet Routing with Fully-Distributed Multi-Agent Deep Reinforcement Learning. – Journal of LATEX Class Files, Vol. 14, August 2015, No 8, arXiv:1905.03494v2.
  26. 26. Wang, F., R. Feng, H. Chen. Dynamic Routing Algorithm with Q-Learning for Internet of Things with Delayed Estimator. – In: IOP Conf. Series: Earth and Environmental Science. Vol. 234. 2019. DOI:10.1088/1755-1315/234/1/012048.10.1088/1755-1315/234/1/012048
  27. 27. Singh, K., J. Kaur. Machine Learning Based Link Cost Estimation for Routing Optimization in Wireless Sensor Networks. – Advances in Wireless and Mobile Communications, Vol. 10, 2017, No 1, pp. 39-49. ISSN 0973-6972.
DOI: https://doi.org/10.2478/cait-2021-0042 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 45 - 61
Submitted on: May 9, 2021
Accepted on: Nov 8, 2021
Published on: Dec 9, 2021
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 T. C. Jermin Jeaunita, V. Sarasvathi, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.