1. Shynu, P. G., K. J. Singh. A Comprehensive Survey and Analysis on Access Control Schemes in Cloud Environment. – Cybernetics and Information Technologies, Vol. 16, 2016, No 1, pp. 19-38.10.1515/cait-2016-0002
2. Beloglazov, A., R. Buyya. Managing Overloaded Hosts for Dynamic Consolidation of Virtual Machines in Cloud Data Centers under Quality-of-Service Constraints. – IEEE Transactions on Parallel and Distributed Systems, 2013. DOI: 10.1109/TPDS.2012.240.10.1109/TPDS.2012.240
3. Puhan, S., D. Panda, B. K. Mishra. Energy Efficiency for Cloud Computing Applications: A Survey on the Recent Trends and Future Scopes. IEEE Xplore, 2020.10.1109/ICCSEA49143.2020.9132878
5. Beloglazov, A., R. Buyya. Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Datacenters. – Concurr. Comput. Pract., 2013, pp. 1397-1420. https://doi.org/10.1002/cpe.186710.1002/cpe.1867
9. Madhumala, R. B., H. Tiwari, C. Devaraj Verma. Virtual Machine Placement Using Energy – Efficient Particle Swarm Optimization in Cloud Datacenter. – Cybernetics and Information Technologies, Vol. 21, 2021, No 1, pp. 62-72.10.2478/cait-2021-0005
11. Bruno, B. C., C. Ribas, R. M. Suguimoto, R. A. N. R. Montaño, F. Silva, L. D. Bona, M. A. Castilho. On Modelling Virtual Machine Consolidation to Pseudo-Boolean Constraints. – J. Pavon, Ed. 2012. pp. 361-370. https://doi.org/10.1007/978-3-642
13. Kumar, M. R. V., S. Raghunathan. Heterogeneity and Thermal Aware Adaptive Heuristics for Energy Efficient Consolidation of Virtual Machines in Infrastructure Clouds. – Journal of Computer and System Sciences, March 2016. https://doi.org/10.1016/j.jcss.2015.07.00510.1016/j.jcss.2015.07.005
15. Okada, T. K., A. De La Fuente Vigliotti, D. M. Batista, A. Goldman vel Lejbman. Consolidation of VMs to Improve Energy Efficiency in Cloud Computing Environments. – In: Proc. of 2015 XXXIII Brazilian Symposium on Computer Networks and Distributed Systems, Vitoria, 2015, pp. 150-158. DOI: 10.1109/SBRC.2015.27.10.1109/SBRC.2015.27
16. Kollu, A., V. Sucharita. Energy-Aware Multi-Objective Differential Evolution in Cloud Computing. – In: S. Dash, S. Das, B. Panigrahi, Eds. Proc. of International Conference on Intelligent Computing and Applications. Advances in Intelligent Systems and Computing. Vol. 632. Singapore, Springer, 2017. https://doi.org/10.1007/978-981-10-5520-1_4010.1007/978-981-10-5520-1_40
18. Mandal, R., M. K. Mondal, S. Banerjee, U. Biswas. An Approach toward Design and Development of an Energy‐Aware VM Selection Policy with Improved SLA Violation in the Domain of Green Cloud Computing. Springer Science+Business Media, LLC, Part of Springer Nature 2020, The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03165-610.1007/s11227-020-03165-6
19. Wood, T., P. Shenoy, A. Venkataramani, M. Yousif. Black-Box and Gray-Box Strategies for Virtual Machine Migration. – In: Proc. of 4th USENIX Symposium on Networked Systems Design Implementation (NSDI’07), 11-13 April 2007, USA, pp. 229-242.
20. Tian, W., Y. Zhao, Y. Zhong, M. Xu, C. Jing. A Dynamic and Integrated Load-Balancing Scheduling Algorithm for Cloud Datacenters. – In: Proc. of 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, 2011, pp. 311-315. DOI: 10.1109/CCIS.2011.6045081.10.1109/CCIS.2011.6045081
21. Lin, X., Z. Liu, W. Guo. Energy-Efficient VM Placement Algorithms for Cloud Data Center. – In: W. Qiang, X. Zheng, C. H. Hsu, Eds. Proc. of Cloud Computing and Big Data. CloudCom-Asia 2015. Vol. 9106. Cham, Springer, 2015. https://doi.org/10.1007/978-3-319-28430-9_410.1007/978-3-319-28430-9_4
22. Greenberg, A., D. Hamilton, A. Maltz, P. Patel. The Cost of a Cloud Research Problems in Data Centers Networks. – In: Proc. of ACM SICOMM, Vol. 39, 2009, No 1, pp. 68-73.10.1145/1496091.1496103
23. Khosravi, A., S. K Garg., R. Buyya. Energy and Carbon-Efficient Placement of Virtual Machines in Distributed Cloud Data Centers. – In: F. Wolf, B. Mohr, D. an Mey, Eds. Proc. of Euro-Par 2013 Parallel Processing. Euro-Par 2013. Lecture Notes in Computer Science, Vol. 8097. Berlin, Heidelberg, Springer, 2013. https://doi.org/10.1007/978-3-642-40047-6_3310.1007/978-3-642-40047-6_33
24. Mazzucco, M., D. Dyachuk, R. Deters. Maximizing Cloud Providers’ Revenues via Energy Aware Allocation Policies. – In: Proc. of 2010 IEEE 3rd International Conference on Cloud Computing, Miami, FL, 2010, pp. 131-138. DOI: 10.1109/CLOUD.2010.68.10.1109/CLOUD.2010.68
25. Rivoire, S., P. Ranganathan, C. Kozyrakis. A Comparison of High-Level Full-System Power Models. – In: Proc. of 2008 Conference on Power Aware Computing and Systems (HotPower’08), USENIX Association, USA.
26. Kavanagh, R., D. Armstrong, K. Djemame, D. Sommacampagna, L. Blasi. Towards an Energy-Aware Cloud Architecture for Smart Grids. – In: J. Altmann, G. Silaghi, O. Rana, Eds. Proc. of Economics of Grids, Clouds, Systems, and Services (GECON’15). Vol. 9512. Cham, Springer, 2015. https://doi.org/10.1007/978-3-319-43177-2_1310.1007/978-3-319-43177-2_13
27. Voorsluys, W., J. Broberg, S. Venugopal, R. Buyya. Cost of Virtual Machine Live Migration in Clouds: A Performance Evaluation. – In: M. G. Jaatun, G. Zhao, C. Rong, Eds. Proc. of Cloud Computing. CloudCom 2009. Lecture Notes in Computer Science. Vol. 5931. Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-642-10665-1_2310.1007/978-3-642-10665-1_23
28. Hongyou, L., W. Jiangyong, P. Jian, W. Junfeng, L. Tang. Energy-Aware Scheduling Scheme Using Workload-Aware Consolidation Technique in Cloud Data Centres. – China Communications, Vol. 10, 2013, No 12, pp. 114-124.10.1109/CC.2013.6723884
29. Simarro, J. L. L., R. M. Vozmediano, R. S. Montero, I. M. Liorente. Scheduling Strategies for Optimal Service Deployment across Multiple Clouds. – Future Generation Computer Systems, Vol. 29, 2013, No 6, pp. 1431-1441. https://doi.org/10.1016/j.future.2012.01.00710.1016/j.future.2012.01.007
30. Calheiros, R. N., R. Ranjan, A. Beloglazov, De C. A. F. Rose, R. Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms. – Softw. Pract. Exp., Vol. 41, 2010, No 1, pp. 23-50, https://doi.org/10.1002/spe.99510.1002/spe.995