Have a personal or library account? Click to login
An Effective e-Commerce Recommender System Based on Trust and Semantic Information Cover

An Effective e-Commerce Recommender System Based on Trust and Semantic Information

Open Access
|Mar 2021

References

  1. 1. Patro, S. G. K., B. K. Mishra, S. K. Panda, R. Kumar, A. Apoorva. Hybrid Social Recommender Systems for Electronic Commerce: A Review. – In: 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA’20), IEEE, 2020, pp. 1-6.
  2. 2. Li, Y. M., C. T. Wu, C. Y. Lai. A Social Recommender Mechanism for e-Commerce: Combining Similarity, Trust, and Relationship. – Decision Support Systems, Vol. 55, 2013, No 3, pp. 740-752.10.1016/j.dss.2013.02.009
  3. 3. Mohana, H., M. Suriakala. An Enhanced Prospective Jaccard Similarity Measure (PJSM) to Calculate the User Similarity Score Set for e-Commerce Recommender System. – In: S. Satapathy, V. Bhateja, B. Janakiramaiah, Y. W. Chen, Eds. Advances in Intelligent Systems and Computing. Singapore, Springer, 2021, pp. 129-142.10.1007/978-981-15-5400-1_14
  4. 4. Schafer, J. B., J. Konstan, J. Riedl. Recommender Systems in e-Commerce. – In: Proc. of 1st ACM Conference on Electronic Commerce, ACM, 1999, pp. 158-166.10.1145/336992.337035
  5. 5. Shambour, Q., J. Lu. An Effective Recommender System by Unifying User and Item Trust Information for B2B Applications. – Journal of Computer and System Sciences, Vol. 81, 2015, No 7, pp. 1110-1126.10.1016/j.jcss.2014.12.029
  6. 6. Aggarwal, C. C. Neighborhood-Based Collaborative Filtering. – In: Recommender Systems: The Textbook, Springer International Publishing, Cham, 2016, pp. 29-70.10.1007/978-3-319-29659-3_2
  7. 7. Ambulgekar, H. P., M. K. Pathak, M. B. Kokare. A Survey on Collaborative Filtering: Tasks, Approaches and Applications. – In: M. Chakraborty, S. Chakrabarti, V. Balas, J. Mandal, Ed. Advances in Intelligent Systems and Computing, Singapore, Springer, 2019, pp. 289-300.
  8. 8. Shambour, Q. Y., M. M. Abu-Alhaj, M. M. Al-Tahrawi. A Hybrid Collaborative Filtering Recommendation Algorithm for Requirements Elicitation. – International Journal of Computer Applications in Technology, Vol. 63, 2020, No 1-2, pp. 135-146.10.1504/IJCAT.2020.107908
  9. 9. Schafer, J. B., D. Frankowski, J. Herlocker, S. Sen. Collaborative Filtering Recommender Systems. – In: P. Brusilovsky, A. Kobsa W. Nejdl, Ed. The Adaptive Web: Methods and Strategies of Web Personalization, Berlin, Heidelberg, Springer, 2007, pp. 291-324.
  10. 10. Adomavicius, G., A. Tuzhilin. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. – IEEE Transactions on Knowledge and Data Engineering, Vol. 17, 2005, No 6, pp.734-749.10.1109/TKDE.2005.99
  11. 11. Shambour, Q. A User-Based Multi-Criteria Recommendation Approach for Personalized Recommendations. – International Journal of Computer Science and Information Security, Vol. 14, 2016, No 12, pp. 657-663.
  12. 12. Shambour, Q., M. Hourani, S. Fraihat. An Item-Based Multi-Criteria Collaborative Filtering Algorithm for Personalized Recommender Systems. – International Journal of Advanced Computer Science and Applications, Vol. 7, 2016, No 8, pp. 274-279.10.14569/IJACSA.2016.070837
  13. 13. Putra, A. A., R. Mahendra, I. Budi, Q. Munajat. Two-Steps Graph-Based Collaborative Filtering Using User and Item Similarities: Case Study of e-Commerce Recommender Systems. – In: Proc. of 2017 International Conference on Data and Software Engineering (ICoDSE’17), IEEE, 2017, pp. 1-6.
  14. 14. Chu, P., S. Lee. A Novel Recommender System for e-Commerce. – In: Proc. of 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI’17), IEEE, 2017, pp. 1-5.10.1109/CISP-BMEI.2017.8302310
  15. 15. Xiao, Y., C. I. Ezeife. e-Commerce Product Recommendation Using Historical Purchases and Clickstream Data. – In: C. Ordonez, L. Bellatreche, Eds. Big Data Analytics and Knowledge Discovery. Cham, Springer International Publishing, 2018, pp. 70-82.10.1007/978-3-319-98539-8_6
  16. 16. Choi, Y. K., S. K. Kim. A Recommendation System for Repetitively Purchasing Items in e-Commerce Based on Collaborative Filtering and Association Rules. – Journal of Internet Technology, Vol. 19, 2018, No 6, pp.1691-1698.
  17. 17. Sassani, B., A. Alahmadi, H. Sharifzadeh. A Cluster Based Collaborative Filtering Method for Improving the Performance of Recommender Systems in e-Commerce. – In: K. Arai, R. Bhatia, S. Kapoor, Eds. Advances in Intelligent Systems and Computing. Cham, Springer International Publishing, 2019, pp. 990-1001.10.1007/978-3-030-02683-7_73
  18. 18. Khodabandehlou, S. Designing an e-Commerce Recommender System Based on Collaborative Filtering Using a Data Mining Approach. – International Journal of Business Information Systems, Vol. 31, 2019, No 4, pp. 455-478.10.1504/IJBIS.2019.10023056
  19. 19. Jiang, L., Y. Cheng, L. Yang, J. Li, H. Yan, X. Wang. A Trust-Based Collaborative Filtering Algorithm for e-Commerce Recommendation System. – Journal of Ambient Intelligence and Humanized Computing, Vol. 10, 2019, No 8, pp. 3023-3034.10.1007/s12652-018-0928-7
  20. 20. Iftikhar, A., M. A. Ghazanfar, M. Ayub, Z. Mehmood, M. Maqsood. An Improved Product Recommendation Method for Collaborative Filtering. – IEEE Access, Vol. 8, 2020, pp. 123841-123857.10.1109/ACCESS.2020.3005953
  21. 21. Singh, M. K., O. P. Rishi. Event Driven Recommendation System for e-Commerce Using Knowledge Based Collaborative Filtering Technique. – Scalable Computing: Practice and Experience, Vol. 21, 2020, No 3, pp. 369-378.10.12694/scpe.v21i3.1709
  22. 22. Dyer, J. S. MAUT – Multiattribute Utility Theory. – In: Multiple Criteria Decision Analysis: State of the Art Surveys. New York, Springer, 2005, pp. 265-292.10.1007/0-387-23081-5_7
  23. 23. Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. – In: Proc. of 1994 ACM Conference on Computer Supported Cooperative Work, ACM, 1994, pp. 175-186.
  24. 24. Gazdar, A., L. Hidri. A New Similarity Measure for Collaborative Filtering Based Recommender Systems. – Knowledge-Based Systems, Vol. 188, 2020, pp.58-105.10.1016/j.knosys.2019.105058
  25. 25. Barzegar Nozari, R., H. Koohi, E. Mahmodi. A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation. – International Journal of Engineering, Vol. 33, 2020, No 3, pp.377-386.10.5829/ije.2020.33.03c.02
  26. 26. Papagelis, M., D. Plexousakis, T. Kutsuras. Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences. – In: P. Herrmann, V. Issarny, S. Shiu, Ed. iTrust 2005: Trust Management. Berlin, Heidelberg, Springer, 2005, pp. 224-239.
  27. 27. Frakes, W. B., R. Baeza-Yates. Information Retrieval: Data Structures and Algorithms. Prentice Hall, 1992.
  28. 28. Herlocker, J., J. A. Konstan, J. Riedl. An Empirical Analysis of Design Choices in Neighborhood-Based Collaborative Filtering Algorithms. – Information Retrieval, Vol. 5, 2002, No 4, pp. 287-310.10.1023/A:1020443909834
  29. 29. Burke, R. Hybrid Web Recommender Systems. – In: P. Brusilovsky, A. Kobsa W. Nejdl, Ed. The Adaptive Web: Methods and Strategies of Web Personalization. Berlin, Heidelberg, Springer, 2007, pp. 377-408.
  30. 30. O’Donovan, J., B. Smyth. Trust in Recommender Systems. – In: Proc. of 10th International Conference on Intelligent User Interfaces, ACM, 2005, pp. 167-174.10.1145/1040830.1040870
  31. 31. Alodhaibi, K. Decision-Guided Recommenders with Composite Alternatives. Information Technology, George Mason University, Virginia, 2011.
  32. 32. Aggarwal, C. C. Evaluating Recommender Systems. – In: Recommender Systems: The Textbook, Springer International Publishing, Cham, 2016, pp. 225-254.10.1007/978-3-319-29659-3_7
  33. 33. Adomavicius, G., Y. O. Kwon. New Recommendation Techniques for Multicriteria Rating Systems. – IEEE Intelligent Systems, Vol. 22, 2007, No 3, pp. 48-55.10.1109/MIS.2007.58
DOI: https://doi.org/10.2478/cait-2021-0008 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 103 - 118
Submitted on: Oct 26, 2020
Accepted on: Jan 22, 2021
Published on: Mar 30, 2021
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Qusai Y. Shambour, Nidal M. Turab, Omar Y. Adwan, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.