Have a personal or library account? Click to login
Virtual Machine Placement Using Energy Efficient Particle Swarm Optimization in Cloud Datacenter Cover

Virtual Machine Placement Using Energy Efficient Particle Swarm Optimization in Cloud Datacenter

Open Access
|Mar 2021

References

  1. 1. Kennedy, J., R. Eberhart. Particle Swarm Optimization. – In: Proc. of IEEE International Conference on Neural Networks, Vol. 4, December 1995.
  2. 2. Beloglazov, A., R. Buyya. Energy Efficient Allocation of Virtual Machines in Cloud Data Centers. – In: Proc. of 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, Melbourne, VIC, 2010, pp. 577-578. DOI: 10.1109/CCGRID.2010.45.10.1109/CCGRID.2010.45
  3. 3. Beloglazov, A., J. Abawajy, R. Buyya. Energy-Aware Resource Allocation Heuristics for Efficient Management of Data Centers for Cloud Computing. – Future Generation Computer, Systems, Vol. 28, 2012, No 5, pp. 755-768.10.1016/j.future.2011.04.017
  4. 4. Srikantaiah, S., A. Kansal, F. Zhao. Energy-Aware Consolidation for Cloud Computing. – In: Proc. of IEEE Conference on Power-Aware Computing and Systems, IEEE Computer Society Press, San Diego, CA, USA, 2010, pp. 577-578.
  5. 5. Blondin, J. Particle Swarm Optimization: A Tutorial. 2009. http://cs.armstrong.edu/saad/csci8100/psotutorial.pdf.
  6. 6. Govardhan, P., P. Srinivasan. Enhanced Evolutionary Computing Assisted Robust SLA-Centric Load Balancing System for Mega Cloud Data Centers. – Cybernetics and Information Technologies, Vol. 19, 2019, No 3, pp. 74-93. DOI: 10.2478/cait-2019-0027.10.2478/cait-2019-0027
  7. 7. Li, S., X. Pan. Adaptive Management and Multi-Objective Optimization of Virtual Machine in Cloud Computing Based on Particle Swarm Optimization. – J. Wireless Com Network, Vol. 102, 2020. https://doi.org/10.1186/s13638-020-01722-410.1186/s13638-020-01722-4
  8. 8. Vijaya, C., P. Srinivasan. A Hybrid Technique for Server Consolidation in Cloud Computing Environment. – Cybernetics and Information Technologies, Vol. 20, 2020, No 1, pp. 36-52.10.2478/cait-2020-0003
  9. 9. Braiki, K., H. Youssef. Multi-Objective Virtual Machine Placement Algorithm Based on Particle Swarm Optimization. – In: Proc. of 14th International Wireless Communications & Mobile Computing Conference (IWCMC’18), Limassol, 2018, pp. 279-284. DOI: 10.1109/IWCMC.2018.8450527.10.1109/IWCMC.2018.8450527
  10. 10. Luo, J., W. Song, L. Yin. Reliable Virtual Machine Placement Based on Multi-Objective Optimization with Traffic-Aware Algorithm in Industrial Cloud. – IEEE Access, Vol. 6, 2018, pp. 23043-23052. DOI: 10.1109/ACCESS.2018.2816983.10.1109/ACCESS.2018.2816983
  11. 11. Wang, S., Z. Liu, Z. Zheng, Q. Sun, F. Yang. Particle Swarm Optimization for Energy-Aware Virtual Machine Optimization in Virtualized Data Centers. – In: Proc. of International Conference on Parallel and Distributed Systems, Seoul, 2013, pp. 102-109. DOI: 10.1109/ICPADS.2013.26.10.1109/ICPADS.2013.26
  12. 12. Kumar, D., Z. Raza. A PSO Based VM Resource Scheduling Model for Cloud Computing. – In: Proc. of IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, 2015, pp. 213-219. DOI: 10.1109/CICT.2015.35.10.1109/CICT.2015.35
  13. 13. Tripathi, A,. I. Pathak, D. P. Vidyarthi. Energy Efficient VM Placement for Effective Resource Utilization using Modified Binary PSO. – The Computer Journal, Vol. 61, June 2017, No 6, pp. 832-846. DOI: 10.1093/comjnl/bxx096.10.1093/comjnl/bxx096
  14. 14. Pandey, S., L. Wu, S. M. Guru, R. Buyya. A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments. – In: Proc. of 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, WA, 2010, pp. 400-407. DOI: 10.1109/AINA.2010.31.10.1109/AINA.2010.31
  15. 15. Gupta, M. K., T. Amgoth. Scheduled Virtual Machine Placement in IaaS Cloud: A MPSO Approach. – In: Proc. of 5th International Conference on Image Information Processing, Shimla, India, 2019, pp. 448-453
  16. 16. Xiaoqing, Z. Energy-Aware Virtual Machine Management Optimization in Clouds. – In: Proc. of 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, 2017, pp. 2434-2438. DOI: 10.1109/CompComm.2017.8322972.10.1109/CompComm.2017.8322972
  17. 17. Boominathan, P., M. Aramudhan, R. K. Saravanaguru. Fuzzy Bio-Inspired Hybrid Techniques for Server Consolidation and Virtual Machine Placement in Cloud Environment. – Cybernetics and Information Technologies, Vol. 17, 2017, No 4, pp. 52-68.10.1515/cait-2017-0041
  18. 18. Toshev, A. Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job Shop Scheduling Problem – Analysis of Test Results. – Cybernetics and Information Technologies, Vol. 19, 2019, No 4, pp. 26-44.10.2478/cait-2019-0034
  19. 19. Madhumala, R. B., H. Tiwari, C. Devarajverma. A Reliable Frame Work for Virtual Machine Selection in Cloud Datacenter Using Particle Swarm Optimization. – International Journal of Mathematics and Computer Science, Vol. 16, 2021, No 2.
  20. 20. Xiong, An-ping, C.-X. Xu. Energy Efficient Multi Resource Allocation of Virtual Machine Based on PSO in Cloud Data Center. – Mathematical Problems in Engineering, Vol. 2014, 2014, Article ID 816518. 8 p. https://doi.org/10.1155/2014/816518, 201410.1155/2014/816518
  21. 21. Calheiros, R. N., R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms. – Software: Practice and Experience, Vol. 41, 2011, No 1, pp. 23-50.
DOI: https://doi.org/10.2478/cait-2021-0005 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 62 - 72
Submitted on: Sep 29, 2020
Accepted on: Feb 19, 2021
Published on: Mar 30, 2021
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 R. B. Madhumala, Harshvardhan Tiwari, Verma C. Devaraj, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.