Have a personal or library account? Click to login
The Probabilistic Risk Measure VaR as Constraint in Portfolio Optimization Problem Cover

The Probabilistic Risk Measure VaR as Constraint in Portfolio Optimization Problem

Open Access
|Mar 2021

References

  1. 1. C h e n, J. M. On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles. – J. Risks, Vol. 6, 2018, No 61. DOI:10.3390/risks6020061.10.3390/risks6020061
  2. 2. D o w d, K. Measuring Market Risk. Second Ed. John Wiley & Sons, Inc., 2005. 390 p. ISBN 13 978-0-470-01303-8, (cloth: alk. paper) ISBN 10 0-470-01303-6 (cloth: alk. paper). https://www.academia.edu/28033721/Measuring_Market_Risk_Second_Edition
  3. 3. E n g l e, R. F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. – J. Econometrica, Vol. 50, 1982, No 4, pp. 987-1007. DOI:10.2307/1912773F. http://www.econ.uiuc.edu/~econ536/Papers/engle82.pdf.10.2307/1912773
  4. 4. G a n d o m i, A., M. H a i d e r. Beyond the Hype: Big Data Concepts, Methods, and Analytics. – International Journal of Information Management, Vol. 35, 2015, pp. 137-144. https://dl.acm.org/doi/10.1016/j.ijinfomgt.2014.10.00710.1016/j.ijinfomgt.2014.10.007
  5. 5. G e o r g i e v a, P. V., I. P. P o p c h e v, S. N. S t o y a n o v. A Multi-Step Procedure for Asset Allocation in Case of Limited Resources. – Cybernetics and Information Technologies, Vol. 15, 2015, No 3, pp. 41-50. DOI: https://doi.org/10.1515/cait-2015-0040.10.1515/cait-2015-0040
  6. 6. I v a n o v a, Z., K. S t o i l o v a, T. S t o I i o v. Portfolio Optimization – Internet Information Service. Academician Publisher “Marin Drinov”, Sofia, 2005. 275 p. ISBN 954-322-021-2.
  7. 7. J a n a b i, M. A. Theoretical and Practical Foundations of Liquidity-Adjusted Value-at-Risk: Optimization Algorithms for Portfolio Selection and Management, in Expert Systems in Finance. N. Metawa, Ed. Taylor Francis Group, 2019, pp. 1-31. ISBN: 978-0-367-10952-3.10.4324/9780429024061-1
  8. 8. K u e s t e r, K., S. M i t t n i k, M. S. P a o l e l l a. Value-at-Risk Prediction: A Comparison of Alternative Strategies. – Journal of Financial Econometrics, Vol. 4, 2006, Issue 1, pp. 53-89. https://doi.org/10.1093/jjfinec/nbj002 https://pdfs.semanticscholar.org/d5c1/05ffa2508f63a0c1f2123b77189a35e5dcab.pdf
  9. 9. K o l m, P. N., R. T u t u n c u, F. J. F a b o z z i. 60 Years of Portfolio Optimization: Practical Challenges and Current Trends. – European Journal of Operational Research, Vol. 234, 2014, pp. 356-371. https://www.sciencedirect.com/science/article/abs/pii/S037722171300889810.1016/j.ejor.2013.10.060
  10. 10. L i u, C., H. S h i, L. W u, M. G u o. The Short-Term and Long-Term Trade-off between Risk and Return: Chaos vs Rationality. – Journal of Business Economics and Management, Vol. 21, 2020, No 1, pp. 23-43. https://doi.org/10.3846/jbem.2019.1134910.3846/jbem.2019.11349
  11. 11. M a l z, A. M. Financial Risk Management: Models, History, and Institution : Models, History, and Institution. John Wiley & Sons, Inc., 2011. 722 p. Print ISBN 978-0-470-48180-6; Online ISBN 978-1-118-02291-7. https://www.academia.edu/32063233/Financial_Risk_Management_by_Allan_M_Malz_pdf
  12. 12. M a r k o w i t z, H., Portfolio Selection. – J. of Finance, Vol. 7, 1952, No 1, pp. 77-91. https://www.math.ust.hk/~maykwok/courses/ma362/07F/markowitz_JF.pdf10.1111/j.1540-6261.1952.tb01525.x
  13. 13. P o p c h e v, I., I. R a d e v a. A Decision Support Method for Investment Preference Evaluation. – Cybernetics and Information Technologies, Vol. 6, 2006, No 1, pp. 3-16.
  14. 14. R a n k o v i ć, V., M. D r e n o v a, B. U r o s e v i c, R. J e l i c. Mean-Uninvariante GARCH VaR Portfolio Optimization: Actual Portfolio Approach. – J. Computers & Operations Research, Vol. 72, August 2016, pp. 83-92. https://doi.org/10.1016/j.cor.2016.01.01410.1016/j.cor.2016.01.014
  15. 15. R u t k a u s k a s, A. V., V. S t a s y t y t ė. Stochastic Informative Expert System for Investment. – Journal of Business Economics and Management, Vol. 21, 2020, No 1, pp. 136-156. https://doi.org/10.3846/jbem.2020.1176810.3846/jbem.2020.11768
  16. 16. S h a r p e, W. Portfolio Theory and Capital Markets. New York, McGraw Hill, 1999. 316 p.
  17. 17. S t o i l o v, T., K. S t o i l o v a, M. V l a d i m i r o v. Analytical Overview and Applications of Modified Black-Litterman Model for Portfolio Optimization. – Cybernetics and Information Technologies, Vol. 20, 2020, No 2, pp. 30-49. Print ISSN: 1311-9702, Online ISSN: 1314-4081, DOI: 10.2478/cait-2020-0014. http://www.cit.iit.bas.bg/CIT-2020/v-20-2/10341-Volume20_Issue_2-03_paper.pdf10.2478/cait-2020-0014
  18. 18. S t o i l o v, T., K. S t o i l o v a, M. V l a d i m i r o v. Modeling and Assessment of Financial Investments by Portfolio Optimization on Stock Exchange. – In: I. Dimov, S. Fidanova, Eds. Advances in High Performance Computing, Studies in Computational Intelligence, Vol. SCI 902. Springer, 2020, pp. 340-356. ISBN 978-3-030-55346-3, ISSN:1860-949x, E-ISSN:1860-9503, DOI: https://doi.org/10.1007/978-3-030-55347-0_29.10.1007/978-3-030-55347-0_29
  19. 19. S t o i l o v, T., K. S t o i l o v a, M. V l a d i m i r o v. Saving Time in Portfolio Optimization on Financial Markets. – In: Application of Decision Science in Business and Management. Prof. Fausto Pedro García Márquez, Ed. 2019, IntechOpen. DOI: 10.5772/intechopen.88985. https://www.intechopen.com/online-first/saving-time-in-portfolio-optimization-on-financial-markets
  20. 20. S u k o n o, P. S i d i, A. T a l i b b i n B o n, S. S u p i a n. Modeling of Mean-VaR Portfolio Optimization by Risk Tolerance When the Utility Function is Quadratic. – In: AIP Conference Proc. 1827, 020035, 2017. https://doi.org/10.1063/1.4979451 https://aip.scitation.org/doi/pdf/10.1063/1.4979451
  21. 21. T a, V.-D., C.-M. L i u, D. A. T a d e s s e. Portfolio Optimization-Based Stock Prediction Using Long-Short Term Memory Network in Quantitative Trading. – Appl. Sci., Vol. 10, 2020, 437. https://doi.org/10.3390/app1002043710.3390/app10020437
  22. 22. V l a d i m i r o v, M., T. S t o i l o v, K. S t o i l o v a. New Formal Description of Expert Views of Black-Litterman Asset Allocation Model. – Cybernetics and Information Technologies, Vol. 17, 2017, No 4, рp. 87-98. ISSN: Print ISSN: 1311-9702, Online ISSN: 1314-408, DOI: 10.1515/cait-2017-0043. http://www.cit.iit.bas.bg/CIT_2017/v-17-4/05_paper.pdf10.1515/cait-2017-0043
  23. 23. https://www.pindling.org/Math/Learning/Statistics/z_scores_table.htm
  24. 24. http://bse-sofia.bg
DOI: https://doi.org/10.2478/cait-2021-0002 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 19 - 31
Submitted on: Dec 21, 2020
Accepted on: Feb 19, 2021
Published on: Mar 30, 2021
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Todor Stoilov, Krasimira Stoilova, Miroslav Vladimirov, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.