Have a personal or library account? Click to login
Comments on the Half Logistic Inverse Rayleigh (HLIR) cdf with “Polynomial Variable Transfer”. Some Applications Cover

Comments on the Half Logistic Inverse Rayleigh (HLIR) cdf with “Polynomial Variable Transfer”. Some Applications

Open Access
|Dec 2020

References

  1. 1. Almarashi, A., M. Badr, M. Elgarhy, F. Jamal, C. Chesneau. Statistical Inference of the Half–Logistic–Inverse–Rayleigh Distribution. – Entropy, Vol. 22, 2020.10.3390/e22040449
  2. 2. Cordeiro, G. M., M. Alizadeh, E. P. R. D. Marinho. The Type I Half-Logistic Family of Distributions. – J. Stat. Comput. Simul., Vol. 86, 2016, pp. 707-728.10.1080/00949655.2015.1031233
  3. 3. Kyurkchiev, N., A. Iliev, A. Rahnev. On the Verhulst Growth Model with “Polynomial Variable Transfer”. Some Applications. – International Journal of Differential Equations and Applications, Vol. 19, 2020, No 1, pp. 15-32.
  4. 4. Kyurkchiev, N., A. Iliev, A. Rahnev. On the Half-Logistic Model with “Polynomial Variable Transfer”. Application to Approximate the Specific “Data CORONA VIRUS”. – International Journal of Differential Equations and Applications, Vol. 19, 2020, No 1, pp. 45-61.
  5. 5. Kyurkchiev, N. Selected Topics in Mathematical Modeling: Some New Trends (Dedicated to Academician Blagovest Sendov (1932-2020)). LAP LAMBERT Academic Publishing, 2020. ISBN: 978-620-2-51403-3.
  6. 6. Kyurkchiev, N., A. Iliev, A. Rahnev, T. Terzieva. On the Extended Half-Logistic Model by H. Bakouch with “Polynomial Variable Transfer”. Application to Approximate the Specific “Data BG COVID-19”, 2020 (to Appear).10.1063/5.0040122
  7. 7. Bakouch, H. A Family of Extended Half-Distributions: Theory and Applications. Filomat, 2020.10.2298/FIL2001257B
  8. 8. https://www.worldometers.info/coronavirus/country/south-korea/
  9. 9. Falliere, N., L. O’Murchu, E. Chien. W32.Stuxnet Dossier. Version 1.4 (February 2011). Symantec Security Response, 2011. 69 p.
  10. 10. Kyurkchiev, N., A. Iliev, A. Rahnev, T. Terzieva. A New Analysis of Code Red and Witty Worms Behavior. – Communications in Applied Analysis, Vol. 23, 2019, No 2, pp. 267-285.
  11. 11. Iliev, A., N. Kyurkchiev, A. Rahnev, T. Terzieva. Some New Approaches for Modelling Large-Scale Worm Spreading on the Internet. II. – Neural, Parallel, and Scientific Computations, Vol. 27, 2019, No 1, pp. 23-34.
  12. 12. Kyurkchiev, N., A. Iliev, A. Rahnev, T. Terzieva. A New Analysis of Cryptolocker Ransomware and Welchia Worm Propagation Behavior. Some Applications. III. – Communications in Applied Analysis, Vol. 23, 2019, No 2, pp. 359-382.
  13. 13. Terzieva, T., A. Iliev, A. Rahnev, N. Kyurkchiev. The Lomax-D-Generalized-Weibull Cumulative Sigmoid with Applications to the Theory of Computer Viruses Propagation. IV. – Neural, Parallel, and Scientific Computations, Vol. 27, 2019, No 3, 4, pp. 141-150.
  14. 14. Terzieva, T., A. Iliev, A. Rahnev, N. Kyurkchiev. On a Powerful Transmuted Odd Log-Logistic-Gumbell Model with Applications to the Theory of Computer Viruses Propagation. V. – Communications in Applied Analysis, Vol. 23, 2019, No 3, pp. 441-451.
  15. 15. Terzieva, T., A. Iliev, A. Rahnev, N. Kyurkchiev. Comments on a New Hyperbolic Sine-Weibull Model with Applications to the Theory of Computer Viruses Propagation. VI. – International Journal of Differential Equations and Applications, Vol. 18, 2019, No 1, pp. 137-146.
  16. 16. Malinova, A., O. Rahneva, A. Golev, V. Kyurkchiev. Investigations on the Odd-Burr-III-Weibull Cumulative Sigmoid. Some Applications. – Neural, Parallel, and Scientific Computations, Vol. 27, 2019, No 1, pp. 35-45.
  17. 17. Rahneva, O., T. Terzieva, A. Golev. Investigations on the Zubair-Family with Baseline Ghosh-Bourguignon’s Extended Burr XII Cumulative Sigmoid. Some Applications. – Neural, Parallel, and Scientific Computations, Vol. 27, 2019, No 1, pp. 11-22.
  18. 18. Angelova, E., A. Golev, T. Terzieva, O. Rahneva. A Study on a Hyper–Power–Logistic Model. Some Applications. – Neural, Parallel and Scientific Computations, Vol. 27, 2019, No 1, pp. 45-57.
  19. 19. Sendov, B. Hausdorff Approximations. Boston, Kluwer, 1990.10.1007/978-94-009-0673-0
  20. 20. Sendov, B., A. Andreev, N. Kyurkchiev. Numerical Solution of Polynomial Equations. – In: Handbook of Numerical Analysis. III. P. Ciarlet, J. Lions, Eds. Amsterdam, Elsevier Science Publ., 1994.10.1016/S1570-8659(05)80019-5
  21. 21. Kyurkchiev, N. Initial Approximation and Root Finding Methods. – In: WILEY-VCH Verlag Berlin GmbH. Vol. 104. 1998.
  22. 22. Iliev, A., N. Kyurkchiev. Nontrivial Methods in Numerical Analysis: Selected Topics in Numerical Analysis. Saarbrucken, LAP Lambert Academic Publishing, 2010. ISBN: 978-3-8433-6793-6.
  23. 23. Kyurkchiev, N., S. Markov. On the Hausdorff Distance between the Heaviside Step Function and Verhulst Logistic Function. – J. Math. Chem., Vol. 54, 2016, No 1, pp. 109-119.10.1007/s10910-015-0552-0
  24. 24. Kyurkchiev, N., S. Markov. Sigmoid Functions: Some Approximation and Modelling Aspects. Saarbrucken, LAP LAMBERT Academic Publishing, 2015. ISBN 978-3-659-76045-7.
  25. 25. Iliev, A., N. Kyurkchiev, A. Rahnev, T. Terzieva. Some Models in the Theory of Computer Viruses Propagation. LAP LAMBERT Academic Publishing, 2019. ISBN: 978-620-0-00826-8.
  26. 26. Markov, S. Reaction Networks Reveal New Links between Gompertz and Verhulst Growth Functions. – Biomath, Vol. 8, 2019, No 1.10.11145/j.biomath.2019.04.167
  27. 27. Kyurkchiev, N. On a Sigmoidal Growth Function Generated by Reaction Networks. Some Extensions and Applications. – Communications in Applied Analysis, Vol. 23, 2019, No 3, pp. 383-400.
  28. 28. Kyurkchiev, N., A. Iliev, S. Markov. Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects. LAP LAMBERT Academic Publishing, 2017. ISBN: 978-3-330-33143-3.
  29. 29. Kyurkchiev, N., A. Iliev, A. Rahnev. Some Families of Sigmoid Functions: Applications to Growth Theory. LAP LAMBERT Academic Publishing, 2019. ISBN: 978-613-9-45608-6.
  30. 30. Iliev, A., N. Kyurkchiev, S. Markov. A Note on the New Activation Function of Gompertz Type. – Biomath Communications, Vol. 4, 2017, No 2. 20 p.10.11145/10.11145/bmc.2017.10.201
  31. 31. Anguelov, R., M. Borisov, A. Iliev, N. Kyurkchiev, S. Markov. On the Chemical Meaning of Some Growth Models Possessing Gompertzian-Type Property. – Math. Meth. Appl. Sci., 2017, pp. 1-12.10.1002/mma.4539
  32. 32. Anguelov, R., N. Kyurkchiev, S. Markov. Some Properties of the Blumberg’s Hyper-Log-Logistic Curve. – BIOMATH, Vol. 7, 2018, No 1. 8 p.10.11145/j.biomath.2018.07.317
  33. 33. Markov, S., A. Iliev, A. Rahnev, N. Kyurkchiev. On the Exponential–Generalized Extended Compertz Cumulative Sigmoid. – International Journal of Pure and Applied Mathematics, Vol. 120, 2018, No 4, pp. 555-562.
  34. 34. Pavlov, N., A. Iliev, A. Rahnev, N. Kyurkchiev. Some Software Reliability Models: Approximation and Modeling Aspects. LAP LAMBERT Academic Publishing, 2018. ISBN: 978-613-9-82805-0.
  35. 35. Pavlov, N., A. Iliev, A. Rahnev, N. Kyurkchiev. Nontrivial Models in Debugging Theory. Part 2. LAP LAMBERT Academic Publishing, 2018. ISBN: 978-613-9-87794-2.
  36. 36. Iliev, A., N. Kyurkchiev, S. Markov. On the Approximation of the Cut and Step Functions by Logistic and Gompertz Functions. – Biomath, Vol. 4, 2015, pp. 2-13.10.11145/j.biomath.2015.10.101
  37. 37. Kyurkchiev, N., A. Iliev, A. Rahnev. A New Class of Activation Functions Based on the Correcting Amendments of Gompertz-Makeham Type. – Dynamic Systems and Applications, Vol. 28, 2019, No 2, pp. 243-257.10.12732/dsa.v28i2.2
  38. 38. Kyurkchiev, N. Investigations on a Hyper-Logistic Model. Some Applications. – Dynamic Systems and Applications, Vol. 28, 2019, No 2, pp. 351-369.
  39. 39. Markov, S., A. Iliev, A. Rahnev, N. Kyurkchiev. A Note on the n-Stage Growth Model. Overview. – Biomath Communications, Vol. 5, 2018, No 2, pp. 79-100.10.11145/bmc.2018.11.117
  40. 40. Kyurkchiev, N., A. Iliev, A. Rahnev. A Look at the New Logistic Models with “Polynomial Variable Transfer”. LAP LAMBERT Academic Publishing, 2020. ISBN: 978-620-2-56595-0.
  41. 41. Kyurkchiev, N., S. Markov. On a Logistic Differential Model. Some Applications. – Biomath Communications, Vol. 6, 2019, No 1, pp. 34-50.10.11145/bmc.2019.04.307
  42. 42. Kyurkchiev, N. Some New Classes of Growth Functions Generated by Reaction Networks and Based on “Correcting Amendments” of Bateman-Gompertz and Bateman-Gompertz-Makeham-Type, I. – Communications in Applied Analysis, Vol. 24, 2020, No 1, pp. 13-29.
  43. 43. Kyurkchiev, N. On a Class of Growth Curves with Exponentially Variable Transfers Generated by Reaction Networks, II. – International Electronic Journal of Pure and Applied Mathematics, Vol. 14, 2020, No 1, pp. 21-29.
  44. 44. http://portalms.saude.gov.br/images/pdf/2016/maio/24/Informe-Epidemiol-gico-n-27-SE-20-2016-24mai2016-12h00.pdf
  45. 45. https://virologydownunder.blogspot.com/2016/06/brazils-microcephaly-and-cns-disorder-m.html
  46. 46. https://www.who.int/csr/disease/swineflu/history_map/InfluenzaAH1N1_maps.html
DOI: https://doi.org/10.2478/cait-2020-0063 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 82 - 93
Submitted on: Sep 5, 2020
Accepted on: Oct 30, 2020
Published on: Dec 31, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Nikolay Kyurkchiev, Anton Iliev, Asen Rahnev, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.