Have a personal or library account? Click to login
Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems Cover

Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems

Open Access
|Dec 2020

References

  1. 1. Roos, C. F., G. P. T. Lancaster, M. Riebe, H. Häffner, W. Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler, R. Blatt. Bell States of Atoms with Ultralong Lifetimes and Their Tomographic State Analysis. – Phys. Rev. Lett., Vol. 92, 2004, 220402.10.1103/PhysRevLett.92.220402
  2. 2. O’Brien, J. L., G. J. Pryde, A. G. White, T. C. Ralph, D. Branning. Demonstration of an All-Optical Quantum Controlled-NOT Gate. – Nature, Vol. 426, 2003, pp. 264-267.10.1038/nature02054
  3. 3. Steffen, M., M. Ansmann, R. McDermott, N. Katz, R. C. Bialczak, E. Lucero, M. Neeley, E. M. Weig, A. N. Cleland, J. M. Martinis. State Tomography of Capacitively Shunted Phase Qubits with High Fidelity. – Phys. Rev. Lett., Vol. 97, 2006, 050502.10.1103/PhysRevLett.97.050502
  4. 4. Foletti, S., H. Bluhm, D. Mahalu, V. Umansky, A. Yacoby. – Nature Physics, Vol. 5, 2009, pp. 903-908.10.1038/nphys1424
  5. 5. Zauner, G. Quantendesigns. Doctoral Thesis, 1999. English Translation Published as Quantum Designs: Foundations of a Noncommutative Design Theory. – Int. J. Quantum Inf., Vol. 9, 2011, No 1, pp. 445-507.10.1142/S0219749911006776
  6. 6. Řeháček, J., B.-G. Englert, D. Kaszlikowski. Minimal Qubit Tomography. – Phys. Rev. A, Vol. 70, 2004, 052321.10.1103/PhysRevA.70.052321
  7. 7. Renes, J. M., R. Blume-Kohout, A. J. Scott, C. M. Caves. Symmetric Informationally Complete Quantum Measurements. – J. Math. Phys., Vol. 45, 2004, pp. 2171-2180.10.1063/1.1737053
  8. 8. Wootters, W. K., B. D. Fields. Optimal State-Determination by Mutually Unbiased Measurements. – Ann. Phys., Vol. 191, 1989, pp. 363-381.10.1016/0003-4916(89)90322-9
  9. 9. Bodmann, B. G., J. I. Haas. Maximal Orthoplectic Fusion Frames from Mutually Unbiased Bases and Block Designs. – Proc. Amer. Math. Soc., Vol. 146, 2018, pp. 2601-2616.10.1090/proc/13956
  10. 10. Rohling, N., G. Burkard. Tomography Scheme for Two Spin-1/2 Qubits in a Double Quantum Dot. – Phys. Rev. B, Vol. 88, 2013, 085402.10.1103/PhysRevB.88.085402
  11. 11. Ivanova-Rohling, V. N., N. Rohling. Optimal Choice of State Tomography Quorum Formed by Projection Operators. – Phys. Rev. A, Vol. 100, 2019, 032332.10.1103/PhysRevA.100.032332
  12. 12. Akbar, Z., V. N. Ivanova, M. R. Berthold. Parallel Data Mining Revisited. Better, Not Faster. – In: J. Hollmén, F. Klawonn, A. Tucker, Eds. Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science. Vol. 7619. Berlin, Heidelberg, Springer, 2012, pp. 23-34.10.1007/978-3-642-34156-4_4
  13. 13. Ivanova, V. N., M. R. Berthold. Diversity-Driven Widening. – In: A. Tucker, F. Höppner, A. Siebes, S. Swift, Eds. Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, Vol. 8207. Berlin, Heidelberg, Springer, 2013, pp. 223-236.10.1007/978-3-642-41398-8_20
  14. 14. Ivanova-Rohling, V. N. Communication-Less Strategies for the Widening of Rule Induction. – In: B. Rachev, A. Smrikarov, Eds. Proc. of 19th International Conference on Computer Systems and Technologies, Association for Computing Machinery, New York, 2018, pp. 33-37.10.1145/3274005.3274033
  15. 15. Ivanova-Rohling, V. N. Neighborhood-Based Strategies for Widening of the Greedy Algorithm of the Set Cover Problem. – In: B. Rachev, A. Smrikarov, Eds. Proc. of 19th International Conference on Computer Systems and Technologies, Association for Computing Machinery, New York, 2018, pp. 27-32.10.1145/3274005.3274036
  16. 16. Powell, M. J. D. An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives. – The Computer Journal, Vol. 7, 1964, pp. 155-162.10.1093/comjnl/7.2.155
  17. 17. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra. Continuous Control with Deep Reinforcement Learning. – arXiv Preprint, 2015, arXiv:1509.02971.
  18. 18. Hill, A., A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, Y. Wu. Stable Baselines. – GitHub Repository, 2018. https://github.com/hill-a/stable-baselines
  19. 19. Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba. OpenAI Gym. – arXiv Preprint, 2016, arXiv:1606.01540.
DOI: https://doi.org/10.2478/cait-2020-0061 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 61 - 73
Submitted on: Sep 15, 2020
Accepted on: Nov 4, 2020
Published on: Dec 31, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Violeta N. Ivanova-Rohling, Niklas Rohling, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.