Have a personal or library account? Click to login
High Performance Machine Learning Models of Large Scale Air Pollution Data in Urban Area Cover

High Performance Machine Learning Models of Large Scale Air Pollution Data in Urban Area

Open Access
|Dec 2020

References

  1. 1. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Official Journal of the European Union. Vol. L152. 2008, No 1.
  2. 2. Air Quality Standards. European Commission. Environment, 2015 (online). http://ec.europa.eu/environment/air/quality/standards.htm
  3. 3. Air Quality in Europe – 2019 Report. European Environment Agency. EEA Report 10, 2019 (online). https://www.eea.europa.eu/publications/air-quality-in-europe-2019.
  4. 4. Brunekreef, B., S. T. Holgate. Air Pollution and Health. – The Lancet, Vol. 360, 2002, No 9341, pp. 1233-1242.10.1016/S0140-6736(02)11274-8
  5. 5. Guarnieri, M., J. R. Balmes. Outdoor Air Pollution and Asthma. – The Lancet, Vol. 383, 2014, No 9928, pp. 1581-1592.10.1016/S0140-6736(14)60617-6
  6. 6. Hu, W., K. Mengersen, A. McMichael, S. Tong. Temperature, Air Pollution and Total Mortality During Summers in Sydney, 1994-2004. – International Journal of Biometeorology, Vol. 52, 2008, No 7, pp. 689-696.10.1007/s00484-008-0161-8
  7. 7. Livieris, I. E., S. Stavroyiannis, E. Pintelas, P. Pintelas. A Novel Validation Framework to Enhance Deep Learning Models in Time-Series Forecasting. – Neural Computing and Applications, 2020. https://doi.org/10.1007/s00521-020-05169-y10.1007/s00521-020-05169-y
  8. 8. Durão, R. M., M. T. Mendes, M. J. Pereira. Forecasting O3 Levels in Industrial Area Surroundings up to 24 h in Advance, Combining Classification Trees and MLP Models. – Atmospheric Pollution Research, Vol. 7, 2016, pp. 961-970.10.1016/j.apr.2016.05.008
  9. 9. Biancofiore, F., M. Busilacchio, M. Verdecchia, B. Tomassetti, E. Aruffo, S. Bianco, S. Di Tommaso, C. Colangeli, G. Rosatelli, P. Di Carlo. Recursive Neural Network Model for Analysis and Forecast of PM10 and PM2.5. – Atmospheric Pollution Research, Vol. 8, 2017, No 4, pp. 652-659.10.1016/j.apr.2016.12.014
  10. 10. Bougoudis, I., K. Demertzis, L. Iliadis. HISYCOL a Hybrid Computational Intelligence System for Combined Machine Learning: The Case of Air Pollution Modelling in Athens. – Neural Computing and Applications, Vol. 27, 2016, No 5, pp. 1191-1206.10.1007/s00521-015-1927-7
  11. 11. Zhang, H., S. Zhang, P. Wang, Y. Qin, H. Wang. Forecasting of Particulate Matter Time Series Using Wavelet Analysis and Wavelet-ARMA/ARIMA Model in Taiyuan, China. – Journal of the Air & Waste Management Association, Vol. 67, 2017, No 7, pp. 776-788.10.1080/10962247.2017.1292968
  12. 12. Gardner, M. W., S. R. Dorling. Statistical Surface Ozone Models: An Improved Methodology to Account for Non-Linear Behavior. – Atmospheric Environment, Vol. 34, 2000, pp. 21-34.10.1016/S1352-2310(99)00359-3
  13. 13. Singh, K. P., S. Gupta, P. Rai. Identifying Pollution Sources and Predicting Urban Air Quality Using Ensemble Learning Methods, – Atmospheric Environment, Vol. 80, 2013, pp. 426-437.10.1016/j.atmosenv.2013.08.023
  14. 14. Bai, Y., Y. Li, X. Wang, J. Xie, C. Li. Air Pollutants Concentrations Forecasting Using Back Propagation Neural Network Based on Wavelet Decomposition with Meteorological Conditions. – Atmospheric Pollution Research, Vol. 7, 2016, No 3, pp. 557-566.10.1016/j.apr.2016.01.004
  15. 15. Dotse, S.-Q., M. I. Petra, L. Dagar, L. C. De Silva. Application of Computational Intelligence Techniques to Forecast Daily PM10 Exceedances in Brunei Darussalam. – Atmospheric Pollution Research, Vol. 9, 2018, No 2, pp. 358-368.10.1016/j.apr.2017.11.004
  16. 16. Roy, S. S., C. Pratyush, C. Barna. Predicting Ozone Layer Concentration Using Multivariate Adaptive Regression Splines, Random Forest and Classification and Regression Tree. – In: Advances in Intelligent Systems and Computing. Vol. 634. 2018, pp. 140-152.10.1007/978-3-319-62524-9_11
  17. 17. Liu, B., C. Shi, J. Li, Y. Li, J. Lang, R. Gu. Comparison of Different Machine Learning Methods to Forecast Air Quality Index. – In: Lecture Notes in Electrical Engineering. Vol. 542. 2019, pp. 235-245.10.1007/978-981-13-3648-5_27
  18. 18. Masih, A. Comparative Analysis of Tree, Meta-Learning and Function Classifiers to Predict the Atmospheric Concentration of NO2. – Journal of Environmental Accounting and Management, Vol. 8, 2020, No 1, pp. 31-39.10.5890/JEAM.2020.03.003
  19. 19. Masmoudi, S., H. Elghazel, D. Taieb, O. Yazar, A. Kallel. A Machine-Learning Framework for Predicting Multiple Air Pollutants’ Concentrations Via Multi-Target Regression and Feature Selection. – In: Science of the Total Environment. Vol. 715. 2020, 136991.10.1016/j.scitotenv.2020.13699132041079
  20. 20. Martínez-España, R., A. Bueno-Crespo, I. Timón, J. Soto, A. Muñoz, J. M. Cecilia. Air-Pollution Prediction in Smart Cities through Machine Learning Methods: A Case of Study in Murcia, Spain. – Journal of Universal Computer Science, Vol. 24, 2018, No 3, pp. 261-276.
  21. 21. Veleva, E., I. Zheleva. GARCH Models for Particulate Matter PM10 Air Pollutant in the City of Ruse, Bulgaria. – In: AIP Conference Proceedings, Vol. 2025, 2018, 040016.10.1063/1.5064900
  22. 22. Joharestani, M. Z., C. Cao, X. Ni, B. Bashir, S. Talebiesfandarani. PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data. – Atmosphere, Vol. 10, 2019, No 7, 373.10.3390/atmos10070373
  23. 23. Breiman, L. Random Forests. – Machine Learning, Vol. 45, 2001, No 1, pp. 5-32.10.1023/A:1010933404324
  24. 24. Box, G. E. P., G. M. Jenkins. Time Series Analysis, Forecasting and Control. Revised Edition. San Francisco. San Francisco, Holden-Day, 1976.
  25. 25. Gocheva-Ilieva, S. G., D. S. Voynikova, M. P. Stoimenova, A. V. Ivanov, I. P. Iliev. Regression Trees Modeling of Time Series for Air Pollution Analysis and Forecasting. – Neural Computing and Applications, Vol. 31, 2019, No 12, pp. 9023-9039.10.1007/s00521-019-04432-1
  26. 26. Weaver, K. F., V. Morales, S. L. Dunn, K. Godde, P. F. Weaver. Pearson’s and Spearman’s Correlation. – In: An Introduction to Statistical Analysis in Research, John Wiley & Sons, Inc., New Jersey, 2017, Ch. 10, pp. 435-471.10.1002/9781119454205
DOI: https://doi.org/10.2478/cait-2020-0060 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 49 - 60
Submitted on: Sep 10, 2020
Accepted on: Nov 4, 2020
Published on: Dec 31, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Snezhana G. Gocheva-Ilieva, Atanas V. Ivanov, Ioannis E. Livieris, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.