Have a personal or library account? Click to login
New Uniform Subregular Parallelisms of PG(3, 4) Invariant under an Automorphism of Order 2 Cover

New Uniform Subregular Parallelisms of PG(3, 4) Invariant under an Automorphism of Order 2

Open Access
|Dec 2020

References

  1. 1. Anderson, J., P. J. Burns, D. Milroy, P. Ruprecht, T. Hauser, H. J. Siegel. Deploying RMACCS Summit: An HPC Resource for the Rocky Mountain Region. – In: Proc. of PEARC’17, New Orleans, LA, USA, 09-13 July 2017. 7 p.10.1145/3093338.3093379
  2. 2. Baker, R. Partitioning the Planes of AG2m(2) into 2-Designs. – Discrete Math., Vol. 15, 1976, pp. 205-211.10.1016/0012-365X(76)90025-X
  3. 3. Bamberg, J. There Are No Regular Packings of PG(3,3) or PG(3, 4). https://symomega.wordpress.com/2012/12/01/
  4. 4. Betten, A. Orbiter – A Program to Classify Discrete Objects, 2016-2018. https://github.com/abetten/orbiter
  5. 5. Betten, A. The packings of PG(3, 3). – Des. Codes Cryptogr., Vol. 79, 2016, No 3, pp. 583-595.10.1007/s10623-015-0074-6
  6. 6. Betten, A., S. Topalova, S. Zhelezova. On Parallelisms of PG(3,4) with Automorphisms of Order 2. – Information and Computation (to Appear).
  7. 7. Betten, A., S. Topalova, S. Zhelezova. Parallelisms of PG(3, 4) Invariant under Cyclic Groups of Order 4. – In: Ćirić M., M. Droste, JÉ. Pin, Eds. Algebraic Informatics. CAI 2019. – Lecture Notes in Computer Science. Vol. 11545. Cham, Springer, 2019, pp. 88-99.
  8. 8. Beutelspacher, A. On Parallelisms in Finite Projective Spaces. – Geometriae Dedicata, Vol. 3, 1974, No 1, pp. 35-45.10.1007/BF00181359
  9. 9. Bruck, R. H. Construction Problems in Finite Projective Spaces. – In: A. Barlotti, Ed. Finite Geometric Structures and Their Applications. C.I.M.E. Summer Schools. Vol. 60. Berlin, Heidelberg, Springer, 2011. https://doi.org/10.1007/978-3-642-10973-7_210.1007/978-3-642-10973-7_2
  10. 10. Denniston, R. H. F. Some Packings of Projective Spaces. – Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Vol. 52, 1972, No 8, pp. 36-40.
  11. 11. Denniston, R. H. F. Cyclic Packings of the Projective Space of Order 8. – Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Vol. 54, 1973, pp. 373-377.
  12. 12. Etzion, T., N. Silberstein. Codes and Designs Related to Lifted MRD Codes. – IEEE Trans. Inform. Theory, Vol. 59, 2013, No 2, pp. 1004-1017.10.1109/TIT.2012.2220119
  13. 13. Etzion, T., L. Storme. Galois Geometries and Coding Theory. – Des. Codes Cryptogr, Vol. 78, 2016, No 1, pp. 311-350.10.1007/s10623-015-0156-5
  14. 14. Heinlein, D., T. Honold, M. Kiermaier, S. Kurz. – Generalized Vector Space Partitions. Bayreuth, Preprint 2019. 12 p. https://epub.uni-bayreuth.de/4097/
  15. 15. Johnson, N. L. Combinatorics of Spreads and Parallelisms. Iowa City, CRC Press, 2010.10.1201/EBK1439819463
  16. 16. Koetter, R., F. R. Kschischang. Coding for Errors and Erasures in Random Network Coding. – IEEE Trans. Inf. Theory, Vol. 54, 2008, pp. 3579-3591.10.1109/TIT.2008.926449
  17. 17. Lunardon, G. On Regular Parallelisms in PG(3, q). – Discrete Math., Vol. 51, 1984, pp. 229-335.10.1016/0012-365X(84)90003-7
  18. 18. Orr, W. F. The Miquelian Inversive Plane IP(q) and the Associated Projective Planes. Ph.D. Thesis, Univ. of Wisconsin, 1973.
  19. 19. Penttila, T., B. Williams. Regular Packings of PG(3, q). – European J. Combin., Vol. 19, 1998, No 6, pp. 713-720.10.1006/eujc.1998.0239
  20. 20. Prince, A. R. The Cyclic Parallelisms of PG(3, 5). – European J. Combin., Vol. 19, 1998, No 5, pp. 613-616.10.1006/eujc.1997.0204
  21. 21. Prince, A. R. Uniform Parallelisms of PG(3, 3). – In: J. Hirschfeld, S. Magliveras, M. Resmini, Eds. Geometry, Combinatorial Designs and Related Structures, London Mathematical Society Lecture Note Series, Cambridge University Press, 1997, pp. 193-200.10.1017/CBO9780511526114.017
  22. 22. Storme, L. Finite Geometry. – In: C. J. Colbourn, J. H. Dinitz, Eds. The CRC Handbook of Combinatorial Designs. Second Ed. Boca Raton, CRC Press, 2006, pp. 702-729.
  23. 23. Topalova, S., S. Zhelezova. Isomorphism and Invariants of Parallelisms of Projective Spaces. – In: A. Bigatti, J. Carette, J. Davenport, M. Joswig, T. de Wolff, Eds. Mathematical Software – ICMS 2020. Lecture Notes in Computer Science. Vol. 12097. 2020, Cham, Springer. https://doi.org/10.1007/978-3-030-52200-1_1610.1007/978-3-030-52200-1_16
  24. 24. Topalova, S., S. Zhelezova. New Regular Parallelisms of PG(3, 5). – J. Combin. Des., Vol. 24, 2016, No 10, pp. 473-482.10.1002/jcd.21526
  25. 25. Topalova, S., S. Zhelezova. On Point-Transitive and Transitive Deficiency One Parallelisms of PG(3, 4). – Des. Codes Cryptogr., Vol. 75, 2015, No 1, pp. 9-19.10.1007/s10623-013-9887-3
  26. 26. Topalova, S., S. Zhelezova. On Transitive Parallelisms of PG(3, 4). – Appl. Algebra Engrg. Comm. Comput., Vol. 24, 2013, No 3-4, pp. 159-164.10.1007/s00200-013-0194-z
  27. 27. Walker, M. Spreads Covered by Derivable Partial Spreads. – J. Combin. Theory Ser. A., Vol. 38, 1985, No 2, pp. 113-130.10.1016/0097-3165(85)90063-9
  28. 28. Zaicev, G., V. Zinoviev, N. Semakov. Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Errorcorrecting Codes. – In: Proc. of 2nd Intern. Symp. on Information Theory (Armenia, USSR, 1971), Budapest, Academiai Kiado, 1973, pp. 257-263.
DOI: https://doi.org/10.2478/cait-2020-0057 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 18 - 27
Submitted on: Sep 15, 2020
Accepted on: Oct 23, 2020
Published on: Dec 31, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Anton Betten, Stela Topalova, Svetlana Zhelezova, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.