References
- 1. Wu, Z., J. M. McGoogan. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. – JAMA, 2020.10.1001/jama.2020.2648
- 2. Yang, Y., F. Peng, R. Wang, K. Guan, T. Jiang, G. Xu, J. Sun, C. Chang. The Deadly Coronaviruses: The 2003 Sars Pandemic and the 2020 Novel Coronavirus Epidemic in China. – Journal of Autoimmunity, 2020, p. 102434.10.1016/j.jaut.2020.102434
- 3. Phan, T. Novel Coronavirus: From Discovery to Clinical Diagnostics. – Infection, Genetics and Evolution, Vol. 79, 2020, p. 104211.10.1016/j.meegid.2020.104211
- 4. Sohrabi, C., Z. Alsafi, N. O’Neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, R. Agha. World Health Organization Declares Global Emergency: A Review of the 2019 Novel Coronavirus (Covid-19). – International Journal of Surgery, Vol. 76, 2020.10.1016/j.ijsu.2020.02.034
- 5. Lima, C. K. T., P. M. d. M. Carvalho, I. d. A. S. Lima, J. V. A. d. O. Nunes, J. S. Saraiva, R. I. de Souza, C. G. L. da Silva, M. L. R. Neto. The Emotional Impact of Coronavirus 2019-Ncov (New Coronavirus Disease). – Psychiatry Research, 2020, p. 112915.10.1016/j.psychres.2020.112915
- 6. Brooks, S. K., R. K. Webster, L. E. Smith, L. Woodland, S. Wessely, N. Greenberg, G. J. Rubin. The Psychological Impact of Quarantine and How to Reduce It: Rapid Review of the Evidence. – The Lancet, Vol. 395, 2020, No 10227, pp. 912-920.10.1016/S0140-6736(20)30460-8
- 7. Villapando, A. Prrd Orders “Stringent Social Distancing Measures” in Ncr., 2020. https://pia.gov.ph/news/articles/1036195
- 8. Zhao, Y., J. Zhang. Consumer Health Information Seeking in Social Media: A Literature Review. – Health Information & Libraries Journal, Vol. 34, 2017, No 4, pp. 268-283.10.1111/hir.1219229045011
- 9. Brandtzæg, P. B., J. Heim. Why People Use Social Networking Sites. Berlin, Heidelberg, Springer, 2009, pp. 143-152.10.1007/978-3-642-02774-1_16
- 10. Liu, B. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, 2012.10.2200/S00416ED1V01Y201204HLT016
- 11. Wang, Y., M. S. M. Pozi, Y. Kawai, A. Jatowt, T. Akiyama. Exploring Cross-Cultural Crowd Sentiments on Twitter. – In: Proc. of 28th ACM Conference on Hypertext and Social Media, Prague, Czech Republic, 2017.10.1145/3078714.3078749
- 12. Kordonis, J., S. Symeonidis, A. Arampatzis. Stock Price Forecasting via Sentiment Analysis on Twitter. – In: Proc. of 20th Pan-Hellenic Conference on Informatics, Patras, Greece, 2016. https://doi.org/10.1145/3003733.300378710.1145/3003733.3003787
- 13. Kanavos, A., N. Nodarakis, S. Sioutas, A. Tsakalidis, D. Tsolis, G. Tzimas. Large Scale Implementations for Twitter Sentiment Classification. – Algorithms, 2017.10.3390/a10010033
- 14. Krauss, J., S. Nann, D. Simon, K. Fischbach, P. Gloor. Predicting Movie Success and Academy Awards through Sentiment and Social Network Analysis. – In: Proc. of European Conference in Information Systems, 2008.
- 15. Wang, H., D. Can, A. Kazemzadeh, F. Bar, S. Narayanan. A System for Real-Time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle. – In: Proc. of ACL 2012 System Demonstrations, Jeju Island, Korea, 2012.
- 16. Karami, A., V. Shah, R. Vaezi, A. Bansal. Twitter Speaks: A Case of National Disaster Situational Awareness. – Journal of Information Science, 2019.10.1177/0165551519828620
- 17. Yin, J., A. Lampert, M. Cameron, B. Robinson, R. Power. Using Social Media to Enhance Emergency Situation Awareness. – IEEE Intelligent Systems, Vol. 27, 2012.10.1109/MIS.2012.6
- 18. Qu, Y., C. Huang, P. Zhang, J. Zhang. Microblogging after a Major Disaster in China: A Case Study of the 2010 Yushu Earthquake. – In: Proc. of ACM 2011 Conference on Computer Supported Cooperative Work, Hangzhou, China, 2011.10.1145/1958824.1958830
- 19. Sakaki, T., M. Okazaki, Y. Matsuo. Earthquake Shakes Twitter Users: Real-Time Event Detection by Social Sensors. – In: Proc. of 19th International Conference on World Wide Web, Raleigh, North Carolina, USA, 2010.10.1145/1772690.1772777
- 20. Vieweg, S. E. Situational Awareness in Mass Emergency: A Behavioral and Linguistic Analysis of Microblogged Communications. Doctor of Philosophy in Technology, Media and Society, Graduate School, University of Colorado, Boulder, Colorado, 2012.
- 21. Imran, M., C. Castillo, F. Diaz, S. Vieweg. Processing Social Media Messages in Mass Emergency: A Survey. – ACM Comput. Surv., Vol. 47, 2015, No 4, Article 67.10.1145/2771588
- 22. Qu, Y., P. F. Wu, X. Wang. Online Community Response to Major Disaster: A Study of Tianya Forum in the 2008 Sichuan Earthquake. – In: Proc. of 42nd Hawaii International Conference on System Sciences, 2009, pp. 1-11.
- 23. Starbird, K., L. Palen, A. L. Hughes, S. Vieweg. Chatter on the Red: What Hazards Threat Reveals About the Social Life of Microblogged Information. – In: Proc. of 2010 ACM Conference on Computer Supported Cooperative Work, Savannah, Georgia, USA, 2010. https://doi.org/10.1145/1718918.171896510.1145/1718918.1718965
- 24. Vieweg, S., A. L. Hughes, K. Starbird, L. Palen. Microblogging During Two Natural Hazards Events: What Twitter May Contribute to Situational Awareness. – In: Proc. of SIGCHI Conference on Human Factors in Computing Systems, Atlanta, Georgia, USA, 2010. https://doi.org/10.1145/1753326.1753486.10.1145/1753326.1753486
- 25. Imran, M., S. Elbassuoni, C. Castillo, F. Diaz, P. Meier. Practical Extraction of Disaster-Relevant Information from Social Media. – In: Proc. of 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 2013.10.1145/2487788.2488109
- 26. Truong, B., C. Caragea, A. Squicciarini, A. H. Tapia. Identifying Valuable Information from Twitter during Natural Disasters. – Proceedings of the American Society for Information Science and Technology, Vol. 51, 2014, No 1, pp. 1-4.10.1002/meet.2014.14505101162
- 27. Ren, D., X. Zhang, Z. Wang, J. Li, X. Yuan. Weiboevents: A Crowd Sourcing Weibo Visual Analytic System. – In: Proc. of 2014 IEEE Pacific Visualization Symposium, 2014, pp. 330-334.
- 28. Morstatter, F., S. Kumar, H. Liu, R. Maciejewski. Understanding Twitter Data with Tweetxplorer. – In: Proc. of 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, 2013.10.1145/2487575.2487703
- 29. MacEachren, A. M., A. Jaiswal, A. C. Robinson, S. Pezanowski, A. Savelyev, P. Mitra, J. Zhang, J. Blanford. Senseplace2: GeoTwitter Analytics Support for Situational Awareness. – In: Proc. of 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), 2011, pp. 181-190.10.1109/VAST.2011.6102456
- 30. Calderon, N. A., R. Arias-Hernandez, B. Fisher. Studying Animation for Real-Time Visual Analytics: A Design Study of Social Media Analytics in Emergency Management. – In: Proc. of 47th Hawaii International Conference on System Sciences, 2014, pp. 1364-1373.10.1109/HICSS.2014.176
- 31. Abel, F., C. Hauff, G.-J. Houben, R. Stronkman, K. Tao. Semantics + Filtering + Search = Twitcident. Exploring Information in Social Web Streams. – In: Proc. of 23rd ACM Conference on Hypertext and Social Media, Milwaukee, Wisconsin, USA, 2012.10.1145/2309996.2310043
- 32. Soriano, C. R., M. D. G. Roldan, C. Cheng, N. Oco. Social Media and Civic Engagement During Calamities: The Case of Twitter Use During Typhoon Yolanda. – Philippine Political Science Journal, Vol. 37, 2016, No 1, pp. 6-25.10.1080/01154451.2016.1146486
- 33. Neppalli, V. K., C. Caragea, A. Squicciarini, A. Tapia, S. Stehle. Sentiment Analysis During Hurricane Sandy in Emergency Response. – International Journal of Disaster Risk Reduction, Vol. 21, 2017, pp. 213-222.10.1016/j.ijdrr.2016.12.011
- 34. Verma, S., S. Vieweg, W. J. Corvey, L. Palen, J. H. Martin, M. Palmer, A. Schram, K. M. Anderson. Natural Language Processing to the Rescue? Extracting “Situational Awareness” Tweets during Mass Emergency. – In: Proc. of International Conference on Weblogs and Social Media, 2011.
- 35. Kaur. A. Analyzing Twitter Feeds to Facilitate Crises Informatics and Disaster Response During Mass Emergencies. M. Sc. in Computing (Data Analytics), Dublin Institute of Technology, TU Dublin, 2019.
- 36. Pang, B., L. Lee. Opinion Mining and Sentiment Analysis. – Foundations and Trends in Information Retrieval, Vol. 2, 2008, No 1-2, pp. 1-135.10.1561/1500000011
- 37. To, H., S. Agrawal, S. H. Kim, C. Shahabi. On Identifying Disaster-Related Tweets: Matching-Based or Learning-Based?. – In: Proc. of 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), 2017, pp. 330-337.10.1109/BigMM.2017.82
- 38. Hasan, A., S. Moin, A. Karim, S. Shamshirband. Machine Learning-Based Sentiment Analysis for Twitter Accounts. – Mathematical and Computational Applications, 2018.10.3390/mca23010011
- 39. Pang, B., L. Lee, S. Vaithyanathan. Thumbs Up? Sentiment Classification Using Machine Learning Techniques. – In: Proc. of ACL-02 Conference on Empirical Methods in Natural Language Processing, Vol. 10, 2002.10.3115/1118693.1118704
- 40. Pang, B., L. Lee. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. – In: Proc. of 42nd Annual Meeting on Association for Computational Linguistics, Barcelona, Spain, 2004.10.3115/1218955.1218990
- 41. Nielsen, F. A. A New Anew: Evaluation of a Word List for Sentiment Analysis in Microblogs. – In: Proc. of ESWC Workshop on “Making Sense of Microposts”: Big Things Come in Small Packages, Heraklion, Crete, 2011.
- 42. Baccianella, S., A. Esuli, F. Sebastiani. Sentiwordnet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. – In: Proc. of 7th International Conference on Language Resources and Evaluation, Valletta, Malta, 2010.
- 43. Rout, J. K., K.-K. R. Choo, A. K. Dash, S. Bakshi, S. K. Jena, K. L. Williams. A Model for Sentiment and Emotion Analysis of Unstructured Social Media Text. – Electronic Commerce Research, Vol. 18, 2018, No 1, pp. 181-199.10.1007/s10660-017-9257-8
- 44. Taboada, M., J. Brooke, M. Tofiloski, K. Voll, M. Stede. Lexicon-Based Methods for Sentiment Analysis. – Computational Linguistics, Vol. 37, 2011, No 2, pp. 267-307.10.1162/COLI_a_00049
- 45. Zhou, Z., X. Zhang, M. Sanderson. Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion. – Springer International Publishing, Cham, 2014, pp. 98-109.10.1007/978-3-319-08608-8_9
- 46. Jurek, A., M. D. Mulvenna, Y. Bi. Improved Lexicon-Based Sentiment Analysis for Social Media Analytics. – Security Informatics, Vol. 4, 2015, No 9.10.1186/s13388-015-0024-x
- 47. Ray, D. Lexicon Based Sentiment Analysis of Twitter Data. – International Journal for Research in Applied Science & Engineering Technology, 2017.10.22214/ijraset.2017.10130
- 48. Han, H., Y. Zhang, J. Zhang, J. Yang, X. Zou. Improving the Performance of Lexicon-Based Review Sentiment Analysis Method by Reducing Additional Introduced Sentiment Bias. – PLOS ONE, Vol. 13, 2018, No 8, p. e0202523.10.1371/journal.pone.0202523610845830142154
- 49. Naldi, M. A Review of Sentiment Computation Methods with R Packages. – arXiv, 2019.
- 50. Davies, S. E. National Security and Pandemics. – United Nation Chronicle, Vol. 50, 2013, No 2.10.18356/0dfec716-en
- 51. Price-Smith, A. T. Contagion and Chaos: Disease, Ecology, and National Security in the Era of Globalization. Cambridge, MA, MIT Press, 2009.10.7551/mitpress/7390.001.0001
- 52. Qiu, W., S. Rutherford, A. Mao, C. Chu. The Pandemic and Its Impacts. – Health, Culture, and Society, 2016.10.5195/HCS.2017.221
- 53. Garcia, M. B. e-Learning Technology Adoption in the Philippines: An Investigation of Factors Affecting Filipino College Students’ Acceptance of Learning Management Systems. –International Journal of e-Learning and Educational Technologies in the Digital Media (IJEETDM), Vol. 3, 2017, No 3, pp. 118-130.10.17781/P002374
- 54. Lau, J. T. F., X. Yang, E. Pang, H. Y. Tsui, E. Wong, Y. K. Wing. Sars-Related Perceptions in Hong Kong. – Emerging Infectious Diseases, Vol. 11, 2005, No 3, pp. 417-424.10.3201/eid1103.040675
- 55. Fielding, R., W. T. Lam Wendy. Reducing Avian Influenza Risk: A Qualitative Exploration of Issues in Hong Kong. – Health Education, Vol. 107, 2007, No 5, pp. 437-447.10.1108/09654280710778574
- 56. Rubin, G. J., R. Amlôt, L. Page, S. Wessely. Public Perceptions, Anxiety, and Behaviour Change in Relation to the Swine Flu Outbreak: Cross Sectional Telephone Survey. – BMJ, Vol. 339, 2009, p. b2651.10.1136/bmj.b2651271468719574308
- 57. Bish, A., S. Michie. Demographic and Attitudinal Determinants of Protective Behaviours During a Pandemic: A Review. – British Journal of Health Psychology, Vol. 15, 2010, No 4.10.1348/135910710X485826718545220109274
- 58. Pickles, H. Using Lessons from the Past to Plan for Pandemic Flu. – BMJ (Clinical Research Ed.), Vol. 332, 2006, No 7544, pp. 783-786.10.1136/bmj.332.7544.783142070216575084
- 59. Centers for Disease Control and Prevention. “Pandemic Influenza – Past, Present, Future: Communicating Today Based on the Lessons from the 1918-1919 Influenza Pandemic”. U.S. Department of Health and Human Services Centers for Disease Control and Prevention Washington, DC 2006.
- 60. Yoon, M.-K., S.-Y. Kim, H.-S. Ko, M.-S. Lee. System Effectiveness of Detection, Brief Intervention and Refer to Treatment for the People with Post-Traumatic Emotional Distress by Mers: A Case Report of Community-Based Proactive Intervention in South Korea. – International Journal of Mental Health Systems, Vol. 10, 2016, No 1, p. 51.10.1186/s13033-016-0083-5497650527504141
- 61. Lee, S., L. Y. Y. Chan, A. M. Y. Chau, K. P. S. Kwok, A. Kleinman. The Experience of Sars-Related Stigma at Amoy Gardens. – Social Science & Medicine, Vol. 61, 2005, No 9, pp. 2038-2046.10.1016/j.socscimed.2005.04.010711697515913861
- 62. Hawryluck, L., W. L. Gold, S. Robinson, S. Pogorski, S. Galea, R. Styra. Sars Control and Psychological Effects of Quarantine, Toronto, Canada. – Emerging Infectious Diseases, Vol. 10, 2004, No 7, pp. 1206-1212.10.3201/eid1007.030703332334515324539
- 63. GMA News. Manila Mayor Isko Moreno Implements Covid-19 Action Plan. 2020.https://www.gmanetwork.com/news/news/metro/729490/manila-mayor-isko-moreno-implements-covid-19-action-plan/story/
