Have a personal or library account? Click to login

Cluster-Based Optimization of an Evacuation Process Using a Parallel Bi-Objective Real-Coded Genetic Algorithm

Open Access
|Sep 2020

References

  1. 1. Akopov, A. S., L. A. Beklaryan, M. Thakur, B. D. Verma. Parallel Multi-Agent Real-Coded Genetic Algorithm for Large-Scale Black-Box Single-Objective Optimisation. – Knowledge-Based Systems, Vol. 174, 2019, pp. 103-122.10.1016/j.knosys.2019.03.003
  2. 2. Akopov, A. S., L. A. Beklaryan, A. K. Saghatelyan. Agent-Based Modelling of Interactions between Air Pollutants and Greenery Using a Case Study of Yerevan, Armenia. – Environmental Modelling and Software, Vol. 116, 2019, pp. 7-25.10.1016/j.envsoft.2019.02.003
  3. 3. Akopov, A. S., L. A. Beklaryan, A. K. Saghatelyan. Agent-Based Modelling for Ecological Economics: A Case Study of the Republic of Armenia. – Ecological Modelling, Vol. 346, 2017, pp. 99-118.10.1016/j.ecolmodel.2016.11.012
  4. 4. Akopov, A. S., L. A. Beklaryan. An Agent Model of Crowd Behavior in Emergencies. – Automation and Remote Control, Vol. 76, 2015, No 10, pp. 1817-1827.10.1134/S0005117915100094
  5. 5. Akopov, A. S. Parallel Genetic Algorithm with Fading Selection. – International Journal of Computer Applications in Technology, Vol. 49, 2014, No 3/4, pp. 325-331.10.1504/IJCAT.2014.062368
  6. 6. Akopov, A. S., M. A. Hevencev. A Multi-Agent Genetic Algorithm for Multi-Objective Optimization. – In: Proc. of IEEE International Conference on Systems, Man and Cybernetics, Manchester: IEEE, 2013, pp. 1391-1395.10.1109/SMC.2013.240
  7. 7. Antonini, G., M. Bierlaire, M. Weber. Discrete Choice Models of Pedestrian Walking Behavior. – Transportation Research Part B: Methodological, Vol. 40, 2006, No 8, pp. 667-687.10.1016/j.trb.2005.09.006
  8. 8. Beklaryan, A. L., A. S. Akopov. Simulation of Agent-Rescuer Behaviour in Emergency Based on Modified Fuzzy Clustering. – In: Proc. of International Joint Conference on Autonomous Agents and Multigene Systems, AAMAS, 2016, pp. 1275-1276.
  9. 9. Beklaryan, G. L., A. S. Akopov, N. K. Khachatryan. Optimisation of System Dynamics Models Using a Real-Coded Genetic Algorithm with Fuzzy Control. – Cybernetics and Information Technologies, Vol. 19, 2019, No 2, pp. 87-103.10.2478/cait-2019-0017
  10. 10. Belev, B., D. Dimitranov, A. Spasov, A. Ivanov. Application of Information Technologies and Algorithms in Ship Passage Planning. – Cybernetics and Information Technologies, Vol. 19, 2019, No 1, pp. 190-200.10.2478/cait-2019-0011
  11. 11. Bezdek, C. J. Cluster Validity with Fuzzy Sets. – Journal of Cybernetics, Vol. 3, 1974, No 3, pp. 58-73.10.1080/01969727308546047
  12. 12. Bezdek, C. J. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, Massa, Kluwer Academic Publishers, 1981.10.1007/978-1-4757-0450-1
  13. 13. Bleuler, S., M. Brack, L. Thiele, E. Zitzler. Multiobjective Genetic Programming: Reducing Bloat Using SPEA2. – In: Proc. of 2001 Congress on Evolutionary Computation (IEEE Cat. No 01TH8546), Seoul, South Korea, 2001, pp. 536-543.
  14. 14. Breer, V. V., D. A. Novikov, A. D. Rogatkin. Mob Control: Models of Threshold Collective Behavior. – Studies in Systems, Decision and Control, Vol. 85, Springer, Cham, 2017, pp. 1-134.10.1007/978-3-319-51865-7_1
  15. 15. De Ceballos, J. P. G., F. Turégano-Fuentes, D. Perez-Diaz, M. Sanz-Sanchez, C. Martin-Llorente, J. E. Guerrero-Sanz. 11 March 2004: The Terrorist Bomb Explosions in Madrid, Spain-Analysis of the Logistics, Injuries Sustained and Clinical Management of Casualties Treated at the Closest Hospital. – Critical Care, Vol. 9, 2004, No 1, pp. 104-111.10.1186/cc2995106510115693992
  16. 16. Deb, K., A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. – IEEE Transactions on Evolutionary Computation, Vol. 6, 2002, No 2, pp. 182-197.10.1109/4235.996017
  17. 17. Deb, K., L. Thiele, M. Laumanns, E. Zitzler. Scalable Multi-Objective Optimization Test Problems. – In: Proc. of Congress on Evolutionary Computation (CEC-2002), IEEE Press, 2002, pp. 825-830.
  18. 18. Deb, K., M. Mohan, S. Mishra. Evaluating the ε-Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. – Evolutionary Computation, Vol. 13, 2005, No 4, pp. 501-525.10.1162/10636560577466689516297281
  19. 19. Deep, K., M. Thakur. A New Crossover Operator for Real Coded Genetic Algorithms. – Applied Mathematics and Computation, Vol. 188, 2007, No 1, pp. 895-911.10.1016/j.amc.2006.10.047
  20. 20. Deep, K., M. Thakur. A New Mutation Operator for Real Coded Genetic Algorithms. – Applied Mathematics and Computation, Vol. 193, 2007, No 1, pp. 211-230.10.1016/j.amc.2007.03.046
  21. 21. Helbing, D., P. Molnar. Social Force Model for Pedestrian Dynamics. – Physical Review E., Vol. 51, 1995, No 5, pp. 4282-4286.10.1103/PhysRevE.51.42829963139
  22. 22. Helbing, D., I. Farkas, T. Vicsek. Simulating Dynamical Features of Escape Panic. – Nature, No 407, 2000, pp. 487-490.10.1038/3503502311028994
  23. 23. Helbing, D., J. I. Farkas, P. Molnàr, T. Vicsek. Simulation of Pedestrian Crowds in Normal and Evacuation Situations. – In: Proc. of PED01, Pedestrian and Evacuation Dynamics, Springer, Heidelberg, 2002, pp. 21-58.
  24. 24. Herrera, F., M. Lozano, J. L. Verdegay. Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis. – Artificial Intelligence Review, Vol. 12, 1998, No 4, pp. 265-319.10.1023/A:1006504901164
  25. 25. Herrera, F., M. Lozano. Gradual Distributed Real-Coded Genetic Algorithms. – IEEE Transactions on Evolutionary Computation, Vol. 4, 2000, No 1, pp. 43-63.10.1109/4235.843494
  26. 26. Kumar, A., K. Deb. Real-Coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems. – Complex Systems, Vol. 9, 1995, pp. 431-454.
  27. 27. Li, H., Q. Zhang. Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II. – IEEE Transactions on Evolutionary Computation, Vol. 13, 2009, No 2, pp. 284-302.10.1109/TEVC.2008.925798
  28. 28. Moussaida, M., D. Helbing, G. Theraulaza. How Simple Rules Determine Pedestrian Behavior and Crowd Disasters. – PNAS, Vol. 108, 2011, No 17, pp. 6884-6892.10.1073/pnas.1016507108308405821502518
  29. 29. Olteanu, M., N. Paraschiv, P. Koprinkova-Hristova. Genetic Algorithms vs. Knowledge-Based Control of PHB Production. – Cybernetics and Information Technologies, Vol. 19, 2019, No 2, pp. 104-116.10.2478/cait-2019-0018
  30. 30. Thakur, M., A. Kumar. Optimal Coordination of Directional over Current Relays Using a Modified Real Coded Genetic Algorithm: A Comparative Study. – International Journal of Electrical Power & Energy Systems, Vol. 82, 2016, pp. 484-495.10.1016/j.ijepes.2016.03.036
  31. 31. Thakur, M., S. S. Meghwani, H. Jalota. A Modified Real Coded Genetic Algorithm for Constrained Optimization. – Applied Mathematics and Computation, Vol. 235, 2014, pp. 292-317.10.1016/j.amc.2014.02.093
  32. 32. Zitzler, E., L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. – IEEE Transactions on Evolutionary Computation, Vol. 3, 1999, No 4, pp. 257-271.10.1109/4235.797969
DOI: https://doi.org/10.2478/cait-2020-0027 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 45 - 63
Submitted on: May 14, 2020
Accepted on: Jun 30, 2020
Published on: Sep 13, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Andranik S. Akopov, Levon A. Beklaryan, Armen L. Beklaryan, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.