Have a personal or library account? Click to login
Bayesian Regularized Neural Network for Prediction of the Dose in Gamma Irradiated Milk Products Cover

Bayesian Regularized Neural Network for Prediction of the Dose in Gamma Irradiated Milk Products

Open Access
|Jun 2020

References

  1. 1. Demuth, H. B., M. H. Beale, O. DeJess.M. T. Hagan. Oklahoma State University, Stillwater, Oklahoma, Neural Network Design, 2014.
  2. 2. Burden, F., D. Winkler. Bayesian Regularization of Neural Networks. – In Artificial Neural Networks, Humana Press, 2008, pp. 23-42.<a href="https://doi.org/10.1007/978-1-60327-101-1_3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-60327-101-1_3</a>
  3. 3. Topuz, A. Predicting Moisture Content of Agricultural Products Using Artificial Neural Networks. – Advances in Engineering Software, Vol. 41, 2010, Issue 3, pp. 464-470.<a href="https://doi.org/10.1016/j.advengsoft.2009.10.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.advengsoft.2009.10.003</a>
  4. 4. Sun, Q., M. Zhang, A. S. Mujumdar. Recent Developments of Artificial Intelligence in Drying of Fresh Food: A Review. – Critical Reviews in Food Science and Nutrition, Vol. 59, 2019, Issue 14, pp. 2258-2275.<a href="https://doi.org/10.1080/10408398.2018.1446900" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/10408398.2018.1446900</a>
  5. 5. Román, R. C., O. G. Hernández, U. A. Urtubia. Prediction of Problematic Wine Fermentations Using Artificial Neural Networks. – Bioprocess and Biosystems Engineering, Vol. 34, 2011, Issue 9, pp.1057-1065.<a href="https://doi.org/10.1007/s00449-011-0557-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00449-011-0557-4</a>
  6. 6. Lamrini, B., G. DellaValle, I. C. Trelea, N. Perrot, G. Trystram. A New Method for Dynamic Modelling of Bread Dough Kneading Based on Artificial Neural Network. – Food Control, Vol. 26, 2012, Issue 2, pp. 512-524.<a href="https://doi.org/10.1016/j.foodcont.2012.01.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.foodcont.2012.01.011</a>
  7. 7. Al-Mahasneh, M., M. Aljarrah, T. Rababah, M. Alu’datt. Application of Hybrid Neural Fuzzy System (ANFIS) in Food Processing and Technology. – Food Engineering Reviews, Vol. 8, 2016, Issue 3, pp. 351-366.<a href="https://doi.org/10.1007/s12393-016-9141-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12393-016-9141-7</a>
  8. 8. Todorov, Y., M. Doneva, P. Metodieva, I. Nacheva. An Intelligent Approach to Formulate the Contents of Novel Functional Food. – In: Proc. of IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA), IEEE, 2014, pp. 98-103.<a href="https://doi.org/10.1109/INISTA.2014.6873603" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/INISTA.2014.6873603</a>
  9. 9. Todorov, Y., I. Nacheva, P. Metodieva, M. Doneva, T. Tsvetkov. Soft Computing Applications in Food Technology. – Bulgarian Journal of Agricultural Science, Vol. 19, 2013, Issue 3, pp. 503-507.
  10. 10. Xiong, HuiYuan, Y. Barash, B. J. Frey. Bayesian Prediction of Tissue-Regulated Splicing Using RNA Sequence and Cellular Context. – Bioinformatics, Vol. 27, 2011, Issue 18, pp. 2554-2562.<a href="https://doi.org/10.1093/bioinformatics/btr444" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/bioinformatics/btr444</a>
  11. 11. Hajmeer, M. N., I. A. Basheer. A Hybrid Bayesian – Neural Network Approach for Probabilistic Modeling of Bacterial Growth/No-Growth Interface. – International Journal of Food Microbiology, Vol. 82, 2003, Issue 3, pp. 233-243.<a href="https://doi.org/10.1016/S0168-1605(02)00308-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0168-1605(02)00308-2</a>
  12. 12. Corney, D. Designing Food with Bayesian Belief Networks. – In: I. C. Parmee, Ed. Evolutionary Design and Manufacture. London, Springer, 2000, pp. 83-94.<a href="https://doi.org/10.1007/978-1-4471-0519-0_7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4471-0519-0_7</a>
  13. 13. Barker, G. C. Application of Bayesian Belief Network Models to Food-Safety Science. – In: Frontis. 2004, pp. 117-128.
  14. 14. Foresee, F. D., M. T. Hagan. Gauss-Newton Approximation to Bayesian Learning. – In: Proc. of IEEE International Conference on Neural Networks (ICNN’97), Vol. 3, 1997, pp. 1930-1935.
  15. 15. Harder, M. N. C., V. Arthur, L. N. C. Harder. Gamma Radiation Effect on Allergenic Food. – In: Allergen. London, UK, IntechOpen, 2017, pp. 139-150.<a href="https://doi.org/10.5772/intechopen.69581" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/intechopen.69581</a>
  16. 16. Odueke, O., K. Farag, R. Baines, S. Chadd. Irradiation Applications in Dairy Products: A Review. – Food and Bioprocess Technology, Vol. 9, 2016, Issue 5, pp. 751-767.<a href="https://doi.org/10.1007/s11947-016-1709-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11947-016-1709-y</a>
  17. 17. Lee, J. W., J. H. Kim, H. S. Yook, K. O. Kang, S. Y. Lee, H. J. Hwang, M. W. Byun. Effects of Gamma Radiation on the Allergenic and Antigenic Properties of Milk Proteins. – J. of Food Protection, Vol. 64, 2001, Issue 2, pp. 272-276.<a href="https://doi.org/10.4315/0362-028X-64.2.272" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4315/0362-028X-64.2.272</a>
DOI: https://doi.org/10.2478/cait-2020-0022 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 141 - 151
Submitted on: Nov 21, 2019
Accepted on: May 21, 2020
Published on: Jun 12, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 M. Terziyska, Y. Todorov, D. Miteva, M. Doneva, S. Dyankova, P. Metodieva, I. Nacheva, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.