Have a personal or library account? Click to login
Emotional Valence Coded in the Phonemic Content – Statistical Evidence Based on Corpus Analysis Cover

Emotional Valence Coded in the Phonemic Content – Statistical Evidence Based on Corpus Analysis

By: Velina Slavova  
Open Access
|Jun 2020

References

  1. 1. Abbassi, E., K. Kahlaoui, M. A. Wilson, Y. Joanette. Processing the Emotions in Words: The Complementary Contributions of the Left and Right Hemispheres. – Cognitive, Affective, & Behavioral Neuroscience, Vol. 11, 2011, No 3, pp. 372-385.10.3758/s13415-011-0034-121533883
  2. 2. Adelman, J. S., Z. Estes, M. Cossu. Emotional Sound Symbolism: Languages Rapidly Signal Valence via Phonemes. – Cognition, Vol. 175, 2018, pp. 122-130.10.1016/j.cognition.2018.02.00729510337
  3. 3. Aryani, A., M. Conrad, A. M. Jacobs. Extracting Salient Sublexical Units from Written Texts: “Emophon,” A Corpus-Based Approach to Phonological Iconicity. – Frontiers in Psychology, Vol. 4, 2013, p. 654.10.3389/fpsyg.2013.00654378724824101907
  4. 4. Aryani, A., M. Kraxenberger, S. Ullrich, A. M. Jacobs, M. Conrad. Measuring the Basic Affective Tone of Poems via Phonological Saliency and Iconicity. – Psychology of Aesthetics, Creativity, and the Arts, Vol. 10, 2016, No 2.10.1037/aca0000033
  5. 5. Bradley, M. M., P. J. Lang. Affective Norms for English Words (ANEW): Stimuli, Instruction Manual and Affective Ratings (Technical Report No C-1). Gainesville, FL: NIMH Center for Research in Psychophysiology, University of Florida, 1999.
  6. 6. Buechel, S., U. Hahn. Emotion Analysis as a Regression Problem – Dimensional Models and Their Implications on Emotion Representation and Metrical Evaluation. – In: Proc. of 22nd European Conference on Artificial Intelligence, IOS Press, 2016, pp. 1114-1122.
  7. 7. Buechel, S., U. Hahn. Readers vs. Writers vs. Texts: Coping with Different Perspectives of Text Understanding in Emotion Annotation. – In: Proc. of 11th Linguistic Annotation Workshop, 2017, pp. 1-12.
  8. 8. Buechel, S., U. Hahn. EMOBANK: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis. – In: Proc. of 15th Conference of the European Chapter of the Association for Computational Linguistics, Vol. 2, Short Papers, 2017, pp. 578-585.
  9. 9. Buechel, S., U. Hahn. A Flexible Mapping Scheme for Discrete and Dimensional Emotion Representations: Evidence from Textual Stimuli. – In: Proc. of 39th Annual Meeting of the Cognitive Science Society (CogSci 2017), 2017, pp. 180-185.
  10. 10. D’Anselmo, A., G. Prete, P. Zdybek, L. Tommasi, A. Brancucci. Guessing Meaning from Word Sounds of Unfamiliar Languages: A Cross-Cultural Sound Symbolism Study. – In: Frontiers in Psychology. Vol. 10. 2019. 593 p.10.3389/fpsyg.2019.00593643383630941080
  11. 11. De Saussure, F. Course in General Linguistics (Trans. Roy Harris). London: Duckworth, 1916/1983.
  12. 12. Dingemanse, M., D. E. Blasi, G. Lupyan, M. H. Christiansen, P. Monaghan. Arbitrariness, Iconicity, and Systematicity in Language. – Trends in Cognitive Sciences, Vol. 19, 2015, No 10, pp. 603-615.10.1016/j.tics.2015.07.01326412098
  13. 13. Dolan, R. J. Emotion, Cognition, and Behavior. – Science, Vol. 298, pp. 1191-1194.10.1126/science.107635812424363
  14. 14. Edmiston, P., M. Perlman, G. Lupyan. Repeated Imitation Makes Human Vocalizations More Word-Like. – Proceedings of the Royal Society B: Biological Sciences, Vol. 285, 2002, No 1874.10.1098/rspb.2017.2709587962929514962
  15. 15. Ekman, P. Basic Emotions. Handbook of Cognition and Emotion, 1999, pp. 45-60.10.1002/0470013494.ch3
  16. 16. Fuster, J. Cortex and Mind. New York City, Oxford University Press, 2003.
  17. 17. Imai, M., S. Kita. The Sound Symbolism Bootstrapping Hypothesis for Language Acquisition and Language Evolution. – Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 369, 2014, No 1651.10.1098/rstb.2013.0298412367725092666
  18. 18. Jakobson, R. Linguistics and Poetics. – In: Style in Language. MA, MIT Press, 1960, pp. 350-377.
  19. 19. Jones, J. M., G. Vigliocco. Iconicity in Word Learning: What Can We Learn from Cross- Situational Learning Experiments? – In: Proc. of Annual Meeting of the Cognitive Society, 2017.
  20. 20. Kawahara, S., K. Shinohara. A Tripartite Trans-Modal Relationship among Sounds, Shapes and Emotions: A Case of Abrupt Modulation. – In: Proc. of Annual Meeting of the Cognitive Science Society, Vol. 34, 2012, No 34.
  21. 21. Köhler, W. Gestalt Psychology. New York, NY: Liveright, 1929.
  22. 22. Maddock, R. J., A. S. Garrett, M. H. Buonocore. Posterior Cingulate Cortex Activation by Emotional Words: fMRI Evidence from a Valence Decision Task. – Human Brain Mapping, Vol. 18, 2003, No 1, pp. 30-41.10.1002/hbm.10075
  23. 23. Macoir, J., C. Hudon, M. P. Tremblay, R. J. Laforce, M. A. Wilson. The Contribution of Semantic Memory to the Recognition of Basic Emotions and Emotional Valence: Evidence from the Semantic Variant of Primary Progressive Aphasia. – Social Neuroscience, 2019, pp. 1-12.10.1080/17470919.2019.1577295
  24. 24. Marinkovic, K., R. P. Dhond, A. M. Dale, M. Glessner, V. Carr, E. Halgren. Spatiotemporal Dynamics of Modality-Specific and Supramodal Word Processing. – Neuron, Vol. 38, 2003, No 3, pp. 487-497.10.1016/S0896-6273(03)00197-1
  25. 25. Ortiz-Rios, M., P. Kuśmierek, I. DeWitt, D. Archakov, F. A. Azevedo, M. Sams, J. P. Rauschecker. Functional MRI of the Vocalization-Processing Network in the Macaque Brain. – Frontiers in Neuroscience, Vol. 9, 2015.10.3389/fnins.2015.00113
  26. 26. Russell, J. A., A. Mehrabian. Evidence for a Three-Factor Theory of Emotions. – Journal of Research in Personality, Vol. 11, 1977, No 3, pp. 273-294.10.1016/0092-6566(77)90037-X
  27. 27. Scott, G. G., A. Keitel, M. Becirspahic, B. Yao, S. C. Sereno. The Glasgow Norms: Ratings of 5,500 Words on Nine Scales. – In: Behavior Research Methods. 2018, pp. 1-13.10.31234/osf.io/akzyx
  28. 28. Shklovsky, V. Theory of Prose. Transl. B. Sher. Elmwood Park, IL: Dalkey Archive, 1990.
  29. 29. Sidhu, D. M., P. M. Pexman. Five Mechanisms of Sound Symbolic Association. – In: Psychonomic Bulletin & Review. Vol. 25. No 5. 2018, pp. 1619-1643.10.3758/s13423-017-1361-128840520
  30. 30. Slavova, V. Towards Emotion Recognition in Texts – A Sound-Symbolic Experiment. – International Journal of Cognitive Research in Science, Engineering and Education, Vol. 7, 2019, No 2, pp. 41-51.10.5937/IJCRSEE1902041S
  31. 31. Slavova, V., A. Soschen. On Mental Representations: Language Structure and Meaning Revised. – International Journal Information Theories & Applications, Vol. 2, 2015, No 4, pp. 316-325.
  32. 32. Slavova, V., H. Sahli, W. Verhelst. Multimodal Emotion Recognition – More Cognitive Machines. – In: L. Fernando, J. de Mingo Lopez, C. K. Markov, K. Ivanova, I. Mitov, Eds. New Trends in Intelligent Technologies: Supplement to the Journal Information Technologies and Knowledge, Sofia, Institute of Information Theories and Applications FOI ITHEA, 2009, pp. 70-78.
  33. 33. Ullrich, S., A. Aryani, M. Kraxenberger, A. M. Jacobs, M. Conrad. On the Relation between the General Affective Meaning and the Basic Sublexical, Lexical, and Inter-Lexical Features of Poetic Texts – A Case Study Using 57 Poems of HM Enzensberger. – In: Frontiers in Psychology. Vol. 7. 2017, 2073.10.3389/fpsyg.2016.02073522514428123376
  34. 34. VanOrden, G. C., J. C. Johnston, B. L. Hale. Word Identification in Reading Proceeds from Spelling to Sound to Meaning. – Journal of Experimental Psychology: Learning, Memory, and Cognition, Vol. 14, 1988, No 3.10.1037/0278-7393.14.3.371
  35. 35. Warriner, A. B., V. Kuperman, M. Brysbaert. Norms of Valence, Arousal, and Dominance for 13,915 English Lemmas. – Behavior Research Methods, Vol. 45, 2013, No 4, pp. 1191-1207.10.3758/s13428-012-0314-x23404613
  36. 36. Whissell, C. Phonosymbolism and the Emotional Nature of Sounds: Evidence of the Preferential Use of Particular Phonemes in Texts of Differing Emotional Tone. – Perceptual and Motor Skills, Vol. 89, 1999, No 1, pp. 19-48.10.2466/pms.1999.89.1.1910544399
  37. 37. Winter, B., M. Perlman, L. K. Perry, G. Lupyan. Which Words are Most Iconic?. – Interaction Studies, Vol. 18, 2017, No 3, pp. 443-464.10.1075/is.18.3.07win
  38. 38. EmoBank Corpus [8]. Internet Resource. https://github.com/JULIELab/EmoBank
DOI: https://doi.org/10.2478/cait-2020-0012 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 3 - 21
Submitted on: Feb 18, 2020
Accepted on: May 12, 2020
Published on: Jun 12, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Velina Slavova, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.