Have a personal or library account? Click to login
An Indonesian Hoax News Detection System Using Reader Feedback and Naïve Bayes Algorithm Cover

An Indonesian Hoax News Detection System Using Reader Feedback and Naïve Bayes Algorithm

Open Access
|Mar 2020

References

  1. 1. Hornby, A. S. Oxford Advanced Learner’s Dictionary of Current English. Oxford University Press, UK, 1995.
  2. 2. Vukovic, M., K. Pripuzic, H. Belani. An Intelligent Automatic Hoax Detection System. – Knowledge-Based and Intelligent Information and Engineering Systems, 2009, pp. 318-325.10.1007/978-3-642-04595-0_39
  3. 3. Petkovic, T., Z. Kostanjcar, P. Pale. e-Mail System for Automatic Hoax Recognition. – In: 27th MIPRO International Conference, 2005, pp. 117-121.
  4. 4. Anonymous. Hoax Email Captures Yahoo’s Customer Credit Numbers, 2002, p. 3.10.1016/S1361-3723(02)01104-1
  5. 5. Almeida, T. A., T. P. Silva, I. Santos, J. M. G. Hidalgo. Text Normalization and Semantic Indexing to Enhance Instant Messaging and SMS Spam Filtering. – Knowledge-Based System Journal, Vol. 108, 2016, pp. 25-32.10.1016/j.knosys.2016.05.001
  6. 6. Purnomo, M. H., S. Sumpeno, E. I. Setiawan, D. Purwitasari. Biomedical Engineering Research in the Social Network Analysis Era : Stance Classification for Analysis of Hoax Medical News in Social Media. – In: 2nd International Conference on Computer Science and Computational Intelligence, Bali, 2017.
  7. 7. Cunningham, E., W. Marcason. Internet Hoaxes: How to Spot Them and How to Debunk Them. – Journal of the American Dietetic Association, Vol. 101, 2001, No 4, p. 460.10.1016/S0002-8223(01)00117-1
  8. 8. Ishak, A., Y. Y. Chen, S.-P. Yong. Distance-Based Hoax Detection System. – In: International Conference on Computer & Information Science (ICCIS’12), Kuala Lumpur, Malaysia, 2012, pp. 215-220.10.1109/ICCISci.2012.6297242
  9. 9. Chen, Y. Y., S.-P. Yong, A. Ishak. Email Hoax Detection System Using Levenshtein Distance Method. – Journal of Computers, Vol. 9, 2014, No 2, pp. 441-446.10.4304/jcp.9.2.441-446
  10. 10. Rasywir, E., A. Purwarianti. Eksperimen Pada Sistem Klasifikasi Berita Hoax Berbahasa Indonesia Berbasis Pembelajaran Mesin. – Jurnal Cybermatika, Vol. 3, 2015, No 2, pp. 1-8.
  11. 11. Prasetijo, A. B., R. R. Isnanto, D. Eridani, Y. A. A. Soetrisno, M. Arfan, A. Sofwan. Hoax Detection System on Indonesian News Sites Based on Text Classification Using SVM and SGD. – In: 4th International Conference on Information Technology, Computer, and Electrical Engineering, Semarang, Indonesia, 2017, pp. 45-49.10.1109/ICITACEE.2017.8257673
  12. 12. Pratiwi, I. Y. R., R. A. Asmara, F. Rahutomo. Study of Hoax News Detection Using Naive Bayes Classifier in Indonesian Language. – In: International Conference on Information & Communication Technology and System, 2017, pp. 74-78.10.1109/ICTS.2017.8265649
  13. 13. Sirajudeen, S. M., N. F. A. Azmi, A. I. Abubakar. Online Fake News Detection Algorithm. – Journal of Theoretical and Applied Information Technology (JATIT), Vol. 95, 2017, No 17, pp. 4114-4122.
  14. 14. Hernandez, J., C., Hernandez, C. J., Sierra, J. M., Ribagorda. A First Step towards Automatic Hoax Detection. – In: Proc. of 36th Annual 2002, Atlantic City, NJ, USA, 2002, pp. 102-114.
  15. 15. Kim, H., J. Kim, J. Kim, P. Lim. Towards Perfect Text Classification with Wikipedia-Based Semantic Naïve Bayes Learning. – Neurocomputing, Vol. 315, November 2018, pp. 128-134.10.1016/j.neucom.2018.07.002
  16. 16. Rasjid, Z. E., R. Setiawan. Performance Comparison and Optimization of Text Document Classification Using k-NN and Naive Bayes Classification Techniques. – Procedia Computer Science, Vol. 116, Bali, Indonesia, 2017, pp. 107-112.10.1016/j.procs.2017.10.017
  17. 17. Granik, M., V. Mesyura. Fake News Detection Using Naive Bayes Classifier. – In: IEEE First Ukraine Conference on Electrical and Computer Engineering, Kiev, Ukraine, 2017, pp. 900-903.10.1109/UKRCON.2017.8100379
  18. 18. Patil, D. R., J. B. Patil. Malicious URLs Detection Using Decision Tree Classifiers and Majority Voting Technique. – Cybernetics and Information Technologies, Vol. 18, 2018, No 1, pp. 11-29.10.2478/cait-2018-0002
  19. 19. Fatmawati, T., B. Zaman, I. Werdiningsih. Implementation of the Common Phrase Index Method on the Phrase Query for Information Retrieval. – In: Proc. of International Conference on Mathematics: Pure, Applied and Computation, AIP Conference, 2017.
  20. 20. Christopher, M., P. Raghavan, H. Schütze. An Introduction to Information Retrieval. – Natural Language Engineering, Vol. 16, 2010, No 1, pp. 100-103.10.1017/S1351324909005129
  21. 21. Kallimani, J. S., K. G. Srinivasa, E. B. Reddy. Summarizing News Paper Articles: Experiments with Ontology-Based Customized, Extractive Text Summary and Word Scoring. – Cybernetics and Information Technologies, Vol. 12, 2012, No 2, pp. 35-50.10.2478/cait-2012-0011
  22. 22. Tala, F. Z. A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia. Thesis, Universiteit van Amsterdam, Netherlands, 2003.
  23. 23. Agusta, L. Perbandingan Algoritma Stemming Porter Dengan Algoritma Nazief & Adriani Untuk Stemming Dokumen Teks Bahasa Indonesia. – In: Konferensi Nasional Sistem dan Informatika, Bali, Indonesia, 2009, pp. 196-201.
  24. 24. Li, B., L. Han. Distance Weighted Cosine Similarity Measure for Text Classification. – In: International Conference on Intelligent Data Engineering and Automated Learning, Berlin, Heidelberg, 2013, pp. 611-618.10.1007/978-3-642-41278-3_74
  25. 25. Al-Anzi, F. S., D. AbuZeina. Toward an Enhanced Arabic Text Classification Using Cosine Similarity and Latent Semantic Indexing. – Journal of King Saud University – Computer and Information Sciences, Vol. 29, April 2016, pp. 189-195.10.1016/j.jksuci.2016.04.001
  26. 26. Theodoridis, S., K. Koutroumbas. Pattern Recognition: Second Recognition. Academic Press, 2003.
  27. 27. Tung, K. T., N. D. Hung, L. T. My Hanh. A Comparison of Algorithms Used to Measure the Similarity between Two Documents. – International Journal of Advanced Research in Computing Engineering and Technology (IJARCET), Vol. 4, 2015, No 4, pp. 1117-1121.
  28. 28. Han, J., M. Kamber, J. Pei. Data Mining : Concepts and Techniques. – In: The Morgan Kaufmann Series in Data Management Systems, 2011, pp. 83-124.
  29. 29. Bermudez-Ortega, J., E. Besada-Portas, J. A. Lopez-Orozco, J. A. Bonache-Seco, J. M. de la Cruz. Remote Web-Based Control Laboratory for Mobile Devices Based on EJsS, Raspberry Pi and Node.js. – Elsevier, Ltd., Vol. 48, 2015, No 29, pp. 158-163.10.1016/j.ifacol.2015.11.230
  30. 30. Pasquali, S., K. Faaborg. Mastering Node.js: Build Robust and Scalable Real-Time Server-Side. Web Applications Efficiently, Vol. 2. Birmingham, Mumbai, Packt Publishing, 2017.
  31. 31. Chodorow, K. MongoDB: The Definitive Guide Powerful and Scalable Data Storage. O’Reilly Media, Inc., 2013.
  32. 32. Priandini, N., B. Zaman, E. Purwanti. Categorizing Document by Fuzzy c-Means and k-Nearest Neighbors’ Approach. – In: AIP Conference Proceedings, 2012.
  33. 33. Zaman, B., E. Winarko. Analisis Fitur Kalimat untuk Peringkas Teks Otomatis pada Bahasa Indonesia. – International Journal of Computing and Cybernetics System, Vol. 5, 2011, No 2, pp. 60-68.10.22146/ijccs.2019
DOI: https://doi.org/10.2478/cait-2020-0006 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 82 - 94
Submitted on: Jul 30, 2019
Accepted on: Dec 27, 2019
Published on: Mar 27, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Badrus Zaman, Army Justitia, Kretawiweka Nuraga Sani, Endah Purwanti, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.